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Introduction

Control systems are nowadays implemented by means of computers.

The use of digital controllers has several advantages and some disadvantages

+ Controllers are easily implementable, and can be tuned on-line

+ Controllers are small and cheap

+ Complex controllers can be easily implemented

+ Controller can be used to implement monitoring and safety task

- The closed-loop system contains continuous-time components, discrete-time components
and interfacing devices

- The analysis of the closed-loop system is often based on approximations

- Digital controllers are very sensitive to numerical errors

- Controller design is more involved and non-intuitive

- The notion of frequency for discrete-time systems is non-intuitive
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Introduction – Computer controlled systems

PlantController
r(s) e(s) u(s) y(s)+

−

The classical linear control loop (Plant: G(s), Controller: C(s)).
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Introduction – Computer controlled systems

PlantController
r(s) e(s) u(s) y(s)+

−

The classical linear control loop (Plant: G(s), Controller: C(s)).

Continuous-time
plant

Digital
controller

r(z) e(z) u(?) y(s)+

−

A basic digital control loop (Plant: G(s), Controller: C(z)).
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Introduction – Computer controlled systems

PlantController
r(s) e(s) u(s) y(s)+

−

The classical linear control loop (Plant: G(s), Controller: C(s)).

Continuous-time
plant

Digital
controller

A/D

D/A Hold
r(z) e(z) y(s)+

−

A digital control loop (Plant: G(s), Controller: C(z)).
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Introduction – A/D converter

A/D

u(t)u(k)
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Introduction – A/D converter

A/D

u(t)u(k)

u(t)

u(k)

The A/D converter transforms a function of time u(t) into a sequence {u(k)}. If the conversion
is executed every T time instants then (with abuse of notation)

u(k) = u(kT ),

for k ∈ R (R is the set of natural numbers, including zero). The time T is the sampling time.
If the conversion is executed at times ti , with i ∈ R, then u(k) = u(tk ).
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Introduction – D/A converter with Hold

D/A Hold
u(k) u(t)
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Introduction – D/A converter with Hold

D/A Hold
u(k) u(t)
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Introduction – D/A converter with Hold

D/A Hold
u(k) u(t)

u(k)

u⋆(t) u(t)

Other hold devices, i.e. with different profiles of the output, can be used.
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A/D and D/A conversion with Hold

The application of an A/D conversion, followed by a D/A conversion with Hold, to a signal u(t)
does not return the signal u(t).

The A/D conversion associates the same sequence u(k) to infinitely many signals u(t).

The D/A and A/D conversions introduce other distorsions, such as quantization and delays,
which are not discuss in-depth in this course.
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The z-transform

The z-transform is one of the mathematical tools used in the study of discrete-time systems. It
plays a similar role to that of the Laplace transform for continuous-time systems.

A discrete-time (scalar) signal is a sequence of values

x(0), x(1), x(2), · · · , x(k), · · ·

with x(k) ∈ R. To denote the whole sequence we use the notation {x(k)}, where k ∈ N.

A discrete-time signal may arise as the result of a sampling operation on a continuous-time
signal, or as the result of an iterative process carried out, for example, by a computer.
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The z-transform – Definition

Consider a sequence {x(k)}. The (one-sided) z-transform of the sequence, denoted X (z), is
defined as

X (z) = Z({x(k)}) = Z(x(k)) =
∞
∑

k=0

x(k)z−k ,

with z ∈ C, whenever the indicated series exists.
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The z-transform – Definition

Consider a sequence {x(k)}. The (one-sided) z-transform of the sequence, denoted X (z), is
defined as

X (z) = Z({x(k)}) = Z(x(k)) =
∞
∑

k=0

x(k)z−k ,

with z ∈ C, whenever the indicated series exists.

It is possible to define a two-sided z-transform for sequences {x(k)}, with k ∈ N (N is the set of
integer numbers).

The one-sided z-transform coincides with the two-sided one for sequences {x(k)} such that
x(k) = 0, for all negative k ∈ N.

In most engineering applications (and typically in control) it is sufficient to consider the
one-sided z-transform and, often, the series defining the z-transform has a closed-form in the
region of the complex plane in which the series converges.
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The z-transform – Definition

Consider a sequence {x(k)}. The (one-sided) z-transform of the sequence, denoted X (z), is
defined as

X (z) = Z({x(k)}) = Z(x(k)) =
∞
∑

k=0

x(k)z−k ,

with z ∈ C, whenever the indicated series exists.

The z-transform is a series in z−1. Therefore, whenever the series converges, it converges
outside the circle

|z| = R,

for some R > 0. The set |z| > R is the region of convergence of the series, and R is the radius
of convergence.

In practice it is not always necessary to specify the region of convergence of a certain
z-transform, provided it is known that the series converges in some region.
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The z-transform – Examples

Unit step function

x(t) =







1 if t ≥ 0

0 if t < 0
⇒ Sample time T ⇒ x(k) =







1 if k ≥ 0

0 if k < 0

⇓

X (z) =
1

1− z−1
=

z

z − 1
⇐ |z| > 1 ⇐ X (z) = 1 + z−1 + z−2 + · · ·
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The z-transform – Examples

Unit step function

x(t) =







1 if t ≥ 0

0 if t < 0
⇒ Sample time T ⇒ x(k) =







1 if k ≥ 0

0 if k < 0

⇓

X (z) =
1

1− z−1
=

z

z − 1
⇐ |z| > 1 ⇐ X (z) = 1 + z−1 + z−2 + · · ·

Unit ramp function

x(t) =







t if t ≥ 0

0 if t < 0
⇒ Sample time T ⇒ x(k) =







kT if k ≥ 0

0 if k < 0

⇓

X (z) =
Tz−1

(1− z−1)2
=

Tz

(z − 1)2
⇐ |z| > 1 ⇐ X (z) = T (z−1 + 2z−2 + · · · )
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The z-transform – Examples

Polynomial function

x(k) = ak ⇒ X (z) = 1 + az−1 + a2z−2 + · · · = 1

1− az−1
=

z

z − a
|z| > a

Exponential function

x(k) = e−akT ⇒ X (z) = 1 + e−aT z−1 + · · · = 1

1− e−aT z−1
=

z

z − e−aT
|z| > e−aT

Sinusoidal function

x(k) = sin kωT =
e jkωT − e−jkωT

2j
⇒ · · · ⇒ X (z) =

z sinωT

z2 − 2z cosωT + 1
|z| > 1
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The z-transform – Properties (1/4)

Linearity. Let X1(z) = Z(x1(k)), X2(z) = Z(x2(k)), α1 ∈ R and α2 ∈ R. Then

Z(α1x1(k) + α2x2(k)) = α1X1(z) + α2X2(z).

Multiplication by ak . Let X (z) = Z(x(k)) and a ∈ C. Then

Z(akx(k)) = X
( z

a

)

.
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Linearity. Let X1(z) = Z(x1(k)), X2(z) = Z(x2(k)), α1 ∈ R and α2 ∈ R. Then

Z(α1x1(k) + α2x2(k)) = α1X1(z) + α2X2(z).

Multiplication by ak . Let X (z) = Z(x(k)) and a ∈ C. Then

Z(akx(k)) = X
( z

a

)

.

Proof. Note that

Z(akx(k)) =
∞
∑

k=0

akx(k)z−k =
∞
∑

k=0

x(k)
( z

a

)−k
= X

( z

a

)

.
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The z-transform – Properties (1/4)

Linearity. Let X1(z) = Z(x1(k)), X2(z) = Z(x2(k)), α1 ∈ R and α2 ∈ R. Then

Z(α1x1(k) + α2x2(k)) = α1X1(z) + α2X2(z).

Multiplication by ak . Let X (z) = Z(x(k)) and a ∈ C. Then

Z(akx(k)) = X
( z

a

)

.

Shifting Theorem. Let X (z) = Z(x(k)), n ∈ N and x(k) = 0, for k < 0. Then

Z(x(k − n)) = z−nX (z).
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The z-transform – Properties (1/4)

Linearity. Let X1(z) = Z(x1(k)), X2(z) = Z(x2(k)), α1 ∈ R and α2 ∈ R. Then

Z(α1x1(k) + α2x2(k)) = α1X1(z) + α2X2(z).

Multiplication by ak . Let X (z) = Z(x(k)) and a ∈ C. Then

Z(akx(k)) = X
( z

a

)

.

Shifting Theorem. Let X (z) = Z(x(k)), n ∈ N and x(k) = 0, for k < 0. Then

Z(x(k − n)) = z−nX (z).

Proof. Note that

Z(x(k − n)) =
∞
∑

k=0

x(k − n)z−k = z−n
∞
∑

k=0

x(k − n)z−(k−n) = z−n
∞
∑

m=0

x(m)z−m = z−nX (z).
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The z-transform – Properties (1/4)

Linearity. Let X1(z) = Z(x1(k)), X2(z) = Z(x2(k)), α1 ∈ R and α2 ∈ R. Then

Z(α1x1(k) + α2x2(k)) = α1X1(z) + α2X2(z).

Multiplication by ak . Let X (z) = Z(x(k)) and a ∈ C. Then

Z(akx(k)) = X
( z

a

)

.

Shifting Theorem. Let X (z) = Z(x(k)), n ∈ N and x(k) = 0, for k < 0. Then

Z(x(k − n)) = z−nX (z).

In addition

Z(x(k + n)) = zn

[

X (z)−
n−1
∑

k=0

x(k)z−k

]

.

Note that x(k + n) is the sequence shifted to the left (with a forward time shift), and x(k − n) is
the sequence shifted to the right (with a backward time shift).

Dr. G. Scarciotti
Digital Control Systems
12/77



The z-transform – Properties (2/4)

Backward difference. The (first) backward difference between x(k) and x(k − 1) is defined as

∇x(k) = x(k)− x(k − 1).

Then
Z(∇x(k)) = Z(x(k))− Z(x(k − 1)) = X (z)− z−1X (z) = (1− z−1)X (z).

Forward difference. The (first) forward difference between x(k + 1) and x(k) is defined as

∆x(k) = x(k + 1)− x(k).

Then

Z(∆x(k)) = Z(x(k + 1))− Z(x(k)) = (zX (z)− zx(0))− X (z) = (z − 1)X (z)− zx(0).
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The z-transform – Properties (3/4)

Complex translation Theorem. Let X (z) = Z(x(k)) and α ∈ C. Then

Z(e−αkx(k)) = X (zeα).
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The z-transform – Properties (3/4)

Complex translation Theorem. Let X (z) = Z(x(k)) and α ∈ C. Then

Z(e−αkx(k)) = X (zeα).

Proof. Note that

Z(e−αkx(k)) =
∞
∑

k=0

e−αkx(k)z−k =
∞
∑

k=0

x(k)(zeα)−k = X (zeα).
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The z-transform – Properties (3/4)

Complex translation Theorem. Let X (z) = Z(x(k)) and α ∈ C. Then

Z(e−αkx(k)) = X (zeα).

Initial value Theorem. Let X (z) = Z(x(k)) and suppose that

lim
z→∞

X (z)

exists. Then
x(0) = lim

z→∞
X (z).
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The z-transform – Properties (3/4)

Complex translation Theorem. Let X (z) = Z(x(k)) and α ∈ C. Then

Z(e−αkx(k)) = X (zeα).

Initial value Theorem. Let X (z) = Z(x(k)) and suppose that

lim
z→∞

X (z)

exists. Then
x(0) = lim

z→∞
X (z).

Proof. Note that

X (z) =
∞
∑

k=0

x(k)z−k = x(0) +
x(1)

z
+

x(2)

z2
+ · · · ,

hence, letting z → ∞ yields the claim (since the limit exists).
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The z-transform – Properties (3/4)

Complex translation Theorem. Let X (z) = Z(x(k)) and α ∈ C. Then

Z(e−αkx(k)) = X (zeα).

Initial value Theorem. Let X (z) = Z(x(k)) and suppose that

lim
z→∞

X (z)

exists. Then
x(0) = lim

z→∞
X (z).

Final value Theorem. Let X (z) = Z(x(k)) and suppose that all poles of X (z) are in D− (D−

denotes the interior of the unity circle), with the possible exception of a single pole at z = 1.
Then

lim
k→∞

x(k) = lim
z→1

(1− z−1)X (z).
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The z-transform – Properties (4/4)

Complex differentiation. Let X (z) = Z(x(k)). Then

Z(kx(k)) = −z
d

dz
X (z),

and the derivative
d

dz
X (z) converges in the same region as X (z).
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The z-transform – Properties (4/4)

Complex differentiation. Let X (z) = Z(x(k)). Then

Z(kx(k)) = −z
d

dz
X (z),

and the derivative
d

dz
X (z) converges in the same region as X (z).

Proof. Note that
d

dz
X (z) =

∞
∑

k=0

(−k)x(k)z−k−1

hence

−z
d

dz
X (z) =

∞
∑

k=0

kx(k)z−k = Z(kx(k)).
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The z-transform – Properties (4/4)

Complex differentiation. Let X (z) = Z(x(k)). Then

Z(kx(k)) = −z
d

dz
X (z),

and the derivative
d

dz
X (z) converges in the same region as X (z).

Complex integration. Let X (z) = Z(x(k)) and g(k) =
x(k)
k

. Assume lim
k→0

g(k) is finite. Then

Z(g(k)) =

∫ ∞

z

X (ζ)

ζ
dζ + lim

k→0
g(k)
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The z-transform – Properties (4/4)

Complex differentiation. Let X (z) = Z(x(k)). Then

Z(kx(k)) = −z
d

dz
X (z),

and the derivative
d

dz
X (z) converges in the same region as X (z).

Complex integration. Let X (z) = Z(x(k)) and g(k) =
x(k)
k

. Assume lim
k→0

g(k) is finite. Then

Z(g(k)) =

∫ ∞

z

X (ζ)

ζ
dζ + lim

k→0
g(k)

Real convolution Theorem. Let X1(z) = Z(x1(k)) and X2(z) = Z(x2(k)). Then

X1(z)X2(z) = Z

(

k
∑

h=0

x1(h)x2(k − h)

)

= Z

(

k
∑

h=0

x1(k − h)x2(h)

)

.
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The z-transform – The inverse transform

The z-transform is a mapping from a sequence {x(k)} to a complex function X (z).

This mapping is useful only if it is invertible, i.e. from a given X (z) it is possible to find, in a
unique way, the sequence {x(k)} such that Z(x(k)) = X (z).

The process of inversion generates a sequence at the sampling instants. Note that the inverse
z-transform of X (z) yields a unique x(k), but not a unique x(t)! No information on x(t)
outside the sampling times can be obtained.

The sequence {x(k)} is referred to as the inverse z-transform of X (z), and we use the notation

{x(k)} = Z−1(X (z)) or x(k) = Z−1(X (z)).

The inverse z-transform of a complex function X (z) can be computed by means of tables or of
the following methods.

- The direct division method - The computational method

- The partial fraction expansion method - The inversion integral method
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The z-transform – The direct division method

The inverse z-transform of the function X (z) is obtained expanding X (z) into a series in z−1.

This method does not provide a closed-form expression for the sequence {x(k)}: it is useful to
compute the first few elements of {x(k)}, and to infer some structure for the sequence.

The method is motivated by the definition of z-transform. In fact if

X (z) = a0 +
a1

z
+

a2

z2
+ · · ·+ ak

zk
+ · · ·

then
x(0) = a0 x(1) = a1 x(2) = a2 · · · x(k) = ak · · ·

Example. Let

X (z) =
10z + 5

(z − 1)(z − 1/5)
=

10z−1 + 5z−2

1− 6/5z−1 + 1/5z−2
= 10z−1 + 17z−2 + 18.4z−3 + · · ·

hence
x(0) = 0 x(1) = 10 x(2) = 17 x(3) = 18.4 · · ·
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The z-transform – The direct division method

The inverse z-transform of the function X (z) is obtained expanding X (z) into a series in z−1.

This method does not provide a closed-form expression for the sequence {x(k)}: it is useful to
compute the first few elements of {x(k)}, and to infer some structure for the sequence.

The method is motivated by the definition of z-transform. In fact if

X (z) = a0 +
a1

z
+

a2

z2
+ · · ·+ ak

zk
+ · · ·

then
x(0) = a0 x(1) = a1 x(2) = a2 · · · x(k) = ak · · ·

Example. Let

X (z) =
Tz

(z − 1)2
=

Tz−1

1− 2z−1 + z−2
= Tz−1 + 2Tz−2 + 3Tz−3 + · · ·

hence, for all k ≥ 0,
x(k) = kT .
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The z-transform – The computational method

The computational method allows to find the elements of the sequence {x(k)} by means of an
iterative process, which can be easily implemented in a computer.

Let, for example,

X (z) =
a1z + a0

z2 + b1z + b0
and note that

X (z) =
a1z + a0

z2 + b1z + b0
U(z),

provided U(z) = 1, which implies

u(0) = 1 u(1) = 0 u(2) = 0 u(3) = 0 · · ·

Recalling the shifting Theorem, we obtain

x(k + 2) + b1x(k + 1) + b0x(k) = a1u(k + 1) + a0u(k),

which allows to compute, iteratively, x(k), for k ≥ 2, provided x(1) and x(0) are known.
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The z-transform – The computational method

Recalling the shifting Theorem, we obtain

x(k + 2) + b1x(k + 1) + b0x(k) = a1u(k + 1) + a0u(k),

which allows to compute, iteratively, x(k), for k ≥ 2, provided x(1) and x(0) are known.

Computation of x(0)

k = −2 ⇒ x(0) + b1x(−1) + b2x(−2) = a1u(−1) + a0u(−2)

x(−1) = x(−2) = 0 u(−1) = u(−2) = 0

⇓
x(0) = 0

Dr. G. Scarciotti
Digital Control Systems
18/77



The z-transform – The computational method

Recalling the shifting Theorem, we obtain

x(k + 2) + b1x(k + 1) + b0x(k) = a1u(k + 1) + a0u(k),

which allows to compute, iteratively, x(k), for k ≥ 2, provided x(1) and x(0) are known.

Computation of x(1)

k = −1 ⇒ x(1) + b1x(0) + b2x(−1) = a1u(0) + a0u(−1)

x(0) = x(−1) = 0 u(0) = 1 u(−1) = 0

⇓
x(1) = a1
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The z-transform – The computational method

Recalling the shifting Theorem, we obtain

x(k + 2) + b1x(k + 1) + b0x(k) = a1u(k + 1) + a0u(k),

which allows to compute, iteratively, x(k), for k ≥ 2, provided x(1) and x(0) are known.

In summary
x(k + 2) + b1x(k + 1) + b0x(k) = a1u(k + 1) + a0u(k)

with
x(0) = 0, x(1) = a1, u(0) = 1, u(k) = 0, k ≥ 1.

Hence
x(2) = a0 − b1a1 x(3) = b1(b1a1 − a0)− b0a1 · · ·
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The z-transform – The computational method

Recalling the shifting Theorem, we obtain

x(k + 2) + b1x(k + 1) + b0x(k) = a1u(k + 1) + a0u(k),

which allows to compute, iteratively, x(k), for k ≥ 2, provided x(1) and x(0) are known.

Example. Let X (z) =
3z + 1

z2 − z + 1/2

a0=1;a1=3;b0=1/2;b1=-1;
x0=0;x1=a1;u0=1;u1=0;
x=[x0,x1]; n=18;
for k = 1:1:n,
x2=-b1*x1-b0*x0+a1*u1+a0*u0;
x=[x,x2];
x0=x1;x1=x2;u0=u1;
end
plot(x,’o’);grid

0 2 4 6 8 10 12 14 16 18 20
−2

−1

0

1

2

3

4

5

Matlab code to compute and plot the first twenty values of

the sequence {x(k)} = Z−1
(

3z+1
z2−z+1/2

)

.
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The z-transform – The partial fraction
expansion method

The partial fraction expansion method allows to obtain a closed-form expression for the sequence
{x(k)}.
The method relies on the linearity of the z-transform and on the representation of the function
X (z) in a special form.

Let (assume m ≤ n)

X (z) =
n0z

m + n1z
m−1 + · · ·+ nm

zn + d1zn−1 + · · ·+ dn
=

n0z
m + n1z

m−1 + · · ·+ nm

(z − p1)(z − p2) · · · (z − pm)
.

Case simple poles: assume that pi 6= pj , for i 6= j , and that pi 6= 0, for all i , and consider the
function

X (z)

z
=

r0

z
+

r1

z − p1
+

r2

z − p2
+ · · ·+ rn

z − pn
,

where r0 = X (0) and

ri = lim
z→pi

(z − pi )
X (z)

z
.
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The z-transform – The partial fraction
expansion method

Then

X (z) = r0 +
r1z

z − p1
+

r2z

z − p2
+ · · ·+ rnz

z − pn

= r0 +
r1

1− p1z−1
+

r2

1− p2z−1
+ · · ·+ rn

1− pnz−1

and recalling that

Z(δ(k)) = 1 Z(ak) =
1

1− az−1

where δ(k) = 1, for k = 0, and δ(k) = 0, for k ≥ 1, yields, for all k ≥ 0,

x(k) = r0δ(k) + r1p
k
1 + r2p

k
2 + · · ·+ rnp

k
n .

Note that, since X (z) has real coefficients, complex poles appear in conjugate pairs, hence the
corresponding residuals are also conjugate pairs: the sequence {x(k)} has real valued terms.
Case repeated poles: assume that pi = p, for i = 1, . . . n, and consider the function

X (z)

z
=

ri1

z − p
+

ri2

(z − p)1
+ · · ·+ rin

(z − p)n
,

where

rij =
1

(n − j)!
lim
z→p

dn−j

dzn−j

[

(z − p)n
X (z)

z

]

.
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The z-transform – The partial fraction
expansion method

Example.

X (z) =
10z + 5

(z − 1)(z − 1/5)

⇓
X (z)

z
=

10z + 5

z(z − 1)(z − 1/5)
= 25

1

z
+

75

4

1

z − 1
− 175

4

1

z − 1/5

⇓

X (z) = 25 +
75

4

z

z − 1
− 175

4

z

z − 1/5
= 25 +

75

4

1

1− z−1
− 175

4

1

1− 1/5z−1

⇓

x(k) = 25δ(k) +
75

4
1k − 175

4
(1/5)k k ≥ 0
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The z-transform – The partial fraction
expansion method

Example.

X (z) = X (z) =
3z + 1

z2 − z + 1/2

⇓
X (z)

z
=

3z + 1

z(z − (1/2 + 1/2j))(z − (1/2− 1/2j))
=

2

z
− 1 + 4j

z − (1/2 + 1/2j)
− 1− 4j

z − (1/2− 1/2j)

⇓

X (z)=2− (1 + 4j)z

z − (1/2 + 1/2j)
− (1− 4j)z

z − (1/2− 1/2j)
=2− 1 + 4j

1− (1/2 + 1/2j)z−1
− 1− 4j

1− (1/2− 1/2j)z−1

⇓

x(k) = 2δ(k)− 2

(

1√
2

)k

cos
kπ

4
+ 8

(

1√
2

)k

sin
kπ

4
k ≥ 0
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The z-transform – The inversion integral

The most general technique for finding inverse z-transforms relies upon the use of an inversion
integral.

The theoretical justifications of this method are based on the theory of complex functions.

Let X (z) be a z-transform and consider a circle C centered at the origin of the complex plane z
and such that all poles of X (z)zk−1 are inside C.
Then

x(k) =
1

2πj

∮

C
X (z)zk−1dz.

If the function X (z)zk−1 has a finite number of poles, p1 of order q1, p2 of order q2, · · · , pn of
order qn, with pi 6= 0 for all i = 1, . . . n, then

1

2πj

∮

C
X (z)zk−1dz = r1 + r2 + · · ·+ rn,

where

ri =
1

(qi − 1)!
lim
z→pi

dqi−1

dzqi−1

[

(z − pi )
qiX (z)zk−1

]

.

This formula is valid only if X (z)zk−1 does not have poles at the origin!
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Outline

◮ Introduction to digital control systems

◮ Z-transform: definition, properties and theorems

◮ Sampling and reconstruction

◮ The pulse transfer function

◮ Stability and performance

◮ Control design (discretization, W -plane, root locus and analytical methods)

◮ State space approach

◮ Optimal control (dynamic programming and LQR)

◮ Some advanced topics
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Sampling and reconstruction (1/5)

Discrete-time and continuous-time systems are interconnected by means of samplers
(A/D converters) and holders (D/A converters).

The sampler converts a continuous-time signal into a sequence of samples taken at time t = 0,
t = T , t = 2T , · · · , where T is the sampling time.

For t 6= kT the sampler does not process information. Note that two signals may have equal
samples but may be significantly different.

The main reason to transform the signal x(t) into a sequence is that the latter can be easily
processed by a computer. The processed sequence is then converted, by a hold device, into a
continuous-time signal.

HoldProcessor
xr (t)x(kT )e(kT )e(t)

T

Sampler, processor, hold interconnection.
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Sampling and reconstruction (1/5)

Hold
x(t)

T

xr (t)x(kT )

Consider the cascaded interconnection of a sampler and a hold device.

Suppose the hold device keeps its output at the value x(kT ) for all t ∈ [kT , (k + 1)T ).
(This is the simplest possible hold, and it is named zero-order hold.)

Consider the sequence {x(kT )}, and assume x(kT ) = 0, for k < 0. Then

xr (t) =

∞
∑

k=0

x(kT ) [h(t − kT )− h(t − (k + 1)T )] ,

where

h(t − t0) =







0 if t < t0

1 if t ≥ t0.
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Sampling and reconstruction (1/5)

Hold
x(t)

T

xr (t)x(kT )

The signal xr (t) is Laplace transformable (recall that L(h(t − kT )) =
e−kTs

s
):

xr (t) =

∞
∑

k=0

x(kT ) [h(t − kT )− h(t − (k + 1)T ), ]

⇓

Xr (s) =
∞
∑

k=0

x(kT )

[

e−kTs − e−(k+1)Ts

s

]

=
1− e−Ts

s

∞
∑

k=0

x(kT )e−kTs
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Sampling and reconstruction (1/5)

Hold
x(t)

T

xr (t)x(kT )

Xr (s) can be expressed as the product of the functions

H0(s) =
1− e−Ts

s
X⋆(s) =

∞
∑

k=0

x(kT )e−kTs .

The function X⋆(s) is the Laplace transform of a signal x⋆(t) which depends only upon the
sequence of samples {x(kT )}.
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Sampling and reconstruction (1/5)

Hold
x(t)

T

xr (t)x(kT )

The signal X⋆(s) is inverse Laplace transformable:

X⋆(s) =
∞
∑

k=0

x(kT )e−kTs

⇓

x⋆(t) = L−1(X⋆(s)) =

∞
∑

k=0

x(kT )δ(t − kT )

δ(t − kT ) is a Dirac impulse of unity area centered at t = kT .
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Sampling and reconstruction (1/5)

Hold
x(t)

T

xr (t)x(kT )

Let

δT (t) =

∞
∑

k=0

δ(t − kT )

then
x⋆(t) = x(t)δT (t),

i.e. x⋆(t) is a sequence of Dirac impulses, modulated by the samples x(kT ).

The product of x(t) with the signal δT (t) is called impulsive sampling of x(t).

The impulsive sampler is an ideal model adequate for control analysis and design.
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Sampling and reconstruction (1/5)

Hold
x(t)

T

xr (t)x(kT )

Applying the signal X⋆(s) at the input of a system with transfer function H0(s) yields the signal
Xr (s), i.e.

Xr (s) = H0(s)X
⋆(s) =

1− e−Ts

s
X⋆(s).

The transfer function H0(s) yields a correct mathematical description
of a zero-order hold provided the sampler is replaced by an impulsive sampler.
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Sampling and reconstruction (1/5)

Hold
x(t)

T

xr (t)x(kT )

m

From an input-output perspective the cascaded interconnection of a sampler
and a zero-order hold is equivalent to the cascaded interconnection of an

impulsive sampler and the transfer function H0(s).

m

x(t)

δT (t)

x⋆(t)
1−e−Ts

s

xr (t)
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Sampling and reconstruction (2/5)

Consider again the signal

X⋆(s) =

∞
∑

k=0

x(kT )e−kTs

and the transformation

z = esT ⇔ s =
1

T
ln z.

Then

X⋆(s)

∣

∣

∣

∣

s= 1
T

ln z

= X⋆

(

1

T
ln z

)

=
∞
∑

k=0

x(kT )z−k = X (z),

which provides a one-to-one relation between the Laplace transform of the impulsive signal x⋆(t)
and the z-transform of the sequence {x(kT )}.
Note that the z-transform X (z) is (in general) a rational function, whereas X⋆(s) is a
trascendental function.
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Sampling and reconstruction (3/5)

We now discuss the relation between X⋆(s) and X (s).

Since x(t) = 0 for all t < 0 we can write

x⋆(t) = x(t)δT (t) = x(t)
∞
∑

k=−∞

δ(t − kT ) = x(t)δeT (t).

The signal δeT (t) is periodic of period T , hence it can be represented with a Fourier series:

δeT (t) =
∞
∑

n=−∞

cne
jnωs t ωs =

2π

T
cn =

1

T

∫ T

0
δeT (t)e

−jnωs tdt =
1

T

⇓

x⋆(t) = x(t)
1

T

∞
∑

n=−∞

e jnωs t =
1

T

∞
∑

n=−∞

x(t)e jnωs t
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Sampling and reconstruction (3/5)

x⋆(t) = x(t)
1

T

∞
∑

n=−∞

e jnωs t =
1

T

∞
∑

n=−∞

x(t)e jnωs t

⇓

X⋆(s) = L(x⋆(t)) = 1

T

∞
∑

n=−∞

L
(

x(t)e jnωs t
)

=
1

T

∞
∑

n=−∞

X (s − jnωs)

The Laplace transform X⋆(s) of the sampled signal is (disregarding the factor 1
T
)

the sum of infinitely many terms,
each obtained from the Laplace transform X (s) of x(t) translated by jnωs .
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Sampling and reconstruction (3/5)

The Laplace transform X⋆(s) of the sampled signal is (disregarding the factor 1
T
)

the sum of infinitely many terms,
each obtained from the Laplace transform X (s) of x(t) translated by jnωs .

⇓

The Fourier transform X⋆(jω) of the sampled signal is (disregarding the factor 1
T
)

the sum of infinitely many terms,
each obtained from the Fourier transform X (jω) of x(t) translated by jnωs .

⇓

X⋆(jω) =
1

T

∞
∑

n=−∞

X (jω − jnωs)

Shannon’s Theorem. If ωs =
2π

T
> 2ωx , where ωx is the highest frequency component

of x(t), then x(t) can be reconstructed from the sampled signal x⋆(t).
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Sampling and reconstruction (3/5)

Shannon’s Theorem. If ωs =
2π

T
> 2ωx , where ωx is the highest frequency component

of x(t), then x(t) can be reconstructed from the sampled signal x⋆(t).

If Nyquist condition, i.e. ωs > 2ωx , holds then the reconstruction of the signal x(t) is performed
by a filter GI (jω) such that

GI (jω) =

{

T |ω| ≤ ωs
2
,

0 elsewhere.

This filter is not physically realizable, since

gI (t) = L−1(GI (jω)) =
sinωs t/2

ωs t/2

is such that gI (t) 6= 0 for t < 0. In signal processing it may be possible to implement
(approximations of) GI (jω), whereas this is impossible in real-time control applications.

This justifies the use, in control, of hold devices, which provide a very coarse approximation of
GI (jω), but are causal and simple to implement.
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Sampling and reconstruction (3/5)

Shannon’s Theorem. If ωs =
2π

T
> 2ωx , where ωx is the highest frequency component

of x(t), then x(t) can be reconstructed from the sampled signal x⋆(t).

If Nyquist condition, i.e. ωs > 2ωx does not hold it is not possible to reconstruct x(t) (even with
non-causal filters).

The presence of harmonic components of x(t) with angular frequency larger than ωs/2 causes
the phenomenon of aliasing.

Note that

• signals encountered in signal processing and communications are often band limited, hence
an adequate selection of the sampling frequency avoids aliasing;

• in control applications signals are not band-limited, hence it is essential to consider the
effect of sampling on the system’s performance.
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Sampling and reconstruction (3/5)
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Sampling and reconstruction (4/5)

Hold devices read the elements of the sequence {x(kT )} and yield a continuous-time signal xr (t)
which approximates, in some sense, the signal x(t) which has generated the sequence.

Holds are obtained considering the Taylor series expansion of the signal x(t) around t = kT :

x(t) = x(kT ) +
dx(t)

dt

∣

∣

∣

∣

t=kT

(t − kT ) + · · · .

Note that, since only the elements of the sequence {x(kT )} are available to the hold, the
derivative of x(t) is approximated as

dx(t)

dt

∣

∣

∣

∣

t=kT

≈ x(kT )− x((k − 1)T )

T
.

The number of terms of the series exploited in the realization of the hold device determines the
order of the hold. High-order holds are more precise, but more complex to implement.
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Sampling and reconstruction (4/5)

Hold devices read the elements of the sequence {x(kT )} and yield a continuous-time signal xr (t)
which approximates, in some sense, the signal x(t) which has generated the sequence.

Hold devices interface discrete-time systems and continuous-time systems, hence can be
represented by a transfer function Hr (s) only if the input sequence {x(kT )} is interpreted as a
sequence of modulated impulses.

This considerations yield the following results.

• Zero-order hold. As already discussed its transfer function and impulse response are

H0(s) =
1− e−sT

s
h0(t) =







1 if t ∈ [0,T ),

0 elsewhere.

• First-order hold. Its transfer function and impulse response are

H1(s) =
1 + Ts

T

(

1− e−sT

s

)2

h1(t) =



















1 + t/T if t ∈ [0,T ),

1− t/T if t ∈ [T , 2T ),

0 elsewhere.
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Sampling and reconstruction (4/5)

Zero-order hold

H0(jω) =
1− e−jωT

jω
= T

sinωT/2

ωT/2
e−jωT/2

⇓

|H0(jω)| = T

∣

∣

∣

∣

sinωT/2

ωT/2

∣

∣

∣

∣

∠H0(jω) = ∠sinωT/2− ωT/2
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Frequency response of H0(s) (T = 1).

Dr. G. Scarciotti
Digital Control Systems
28/77



Sampling and reconstruction (4/5)

Zero-order hold

H0(jω) =
1− e−jωT

jω
= T

sinωT/2

ωT/2
e−jωT/2

⇓

|H0(jω)| = T

∣

∣

∣

∣

sinωT/2

ωT/2

∣

∣

∣

∣

∠H0(jω) = ∠sinωT/2− ωT/2

H0(0) = T , i.e. the factor 1/T in the impulsive sampler is compensated by the hold.

For ωT/2 ≪ 1,

H0(jω) =
1− e−jωT

jω
= e−jωT/2 e

jωT/2 − e−jωT/2

jω
≈ Te−jωT/2

i.e. at low frequency the hold is approximated by a delay of T/2 seconds.

H0(jω) = 0 for ωT/2 = kπ, with k ∈ R, i.e. for ω = kωs .
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Sampling and reconstruction (4/5)

First-order hold

H1(jω) =

(

1− e−jωT

jω

)2
1 + jωT

T
= T

(

sinωT/2

ωT/2

)2

(1 + jωT )e−jωT

⇓

|H1(jω)| = T

∣

∣

∣

∣

sinωT/2

ωT/2

∣

∣

∣

∣

2
√

1 + ω2T 2 ∠H1(jω) = 2∠sinωT/2+arctanωT−ωT
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Sampling and reconstruction (4/5)

First-order hold

H1(jω) =

(

1− e−jωT

jω

)2
1 + jωT

T
= T

(

sinωT/2

ωT/2

)2

(1 + jωT )e−jωT

⇓

|H1(jω)| = T

∣

∣

∣

∣

sinωT/2

ωT/2

∣

∣

∣

∣

2
√

1 + ω2T 2 ∠H1(jω) = 2∠sinωT/2+arctanωT−ωT

H1(0) = T , i.e. the factor 1/T in the impulsive sampler is compensated by the hold.

For ωT/2 ≪ 1,
H1(jω) ≈ Te−jωT

i.e. at low frequency the hold is approximated by a delay of T seconds.

H1(jω) = 0 for ωT/2 = kπ, with k ∈ R, i.e. for ω = kωs .
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Sampling and reconstruction (5/5)

The Laplace transform X⋆(s) of the sampled signal is related to the z-transform of the sequence
{x(kT )} of samples by the relation

X⋆(s) = X (z)

∣

∣

∣

∣

z=esT
.

The equation
z = esT

establishes a relation between the two complex variables s and z, which allows to relate
continuous-time properties to discrete-time properties.

Let s = σ + jω and note that

z = eT (σ+jω) = eTσe jTω = eTσe jT(ω+ 2kπ
T ).

Points on the s-plane with angular frequency which differs
by an integer multiple of ωs = 2π

T
are mapped into the same point in the

z-plane.

Dr. G. Scarciotti
Digital Control Systems
29/77



Sampling and reconstruction (5/5)

The Laplace transform X⋆(s) of the sampled signal is related to the z-transform of the sequence
{x(kT )} of samples by the relation

X⋆(s) = X (z)

∣

∣

∣

∣

z=esT
.

The equation
z = esT

establishes a relation between the two complex variables s and z, which allows to relate
continuous-time properties to discrete-time properties.

Let s = σ + jω and note that

z = eT (σ+jω) = eTσe jTω = eTσe jT(ω+ 2kπ
T ).

There are infinitely many values of s for each value of z.
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Sampling and reconstruction (5/5)

z = esT s =
1

T
log z

• Points on the s-plane with negative real part are mapped inside the unity circle of the
z-plane: Re(s) < 0 ⇔ |z| < 1.

• Points on the s-plane with zero real part are mapped into the unity circle of the z-plane:
Re(s) = 0 ⇔ |z| = 1.

• Points on the s-plane with positive real part are mapped outside the unity circle of the
z-plane: Re(s) > 0 ⇔ |z| > 1.

• ∠z = ωT , hence when ω varies from −ωs/2 to ωs/2 the phase of z varies from −π to π.

• The phase of z varies from −π to π for any change in ω from −ωs/2 + kωs to ωs/2 + kωs ,
with k ∈ R.

⇓

It is possible to partition the s-plane into horizontal strips of width ωs .
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Sampling and reconstruction (5/5)

z = esT s =
1

T
log z

It is possible to partition the s-plane into horizontal strips of width ωs .

• The strip between the horizontal lines s = j ωs
2
and s = −j ωs

2
is called primary strip.

• The strips between the horizontal lines s = j ωs
2

+ kωs and s = −j ωs
2

+ kωs, with k ∈ R

and k 6= 0 are called complementary strips.
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Sampling and reconstruction (5/5)

z = esT s =
1

T
log z

It is possible to partition the s-plane into horizontal strips of width ωs .

Primary strip

Complementary strip

Complementary strip

s-plane

j ωs
2

−j ωs
2

j 3ωs
2

−j 3ωs
2
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Sampling and reconstruction (5/5)

z = esT s =
1

T
log z
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x
x
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x
x
x
x
x
x
x
x
x
x
x
x

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

s-plane z-plane

1

j ωs
2

−j ωs
2

Correspondence between the primary strip in the s-plane and the unity circle in the z-plane.
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Sampling and reconstruction (5/5)

z = esT s =
1

T
log z

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

s-plane z-plane

1

j ωs
2

−j ωs
2

Constant attenuation lines: s = σ + jω, with σ constant, |z| = eσT .
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Sampling and reconstruction (5/5)

z = esT s =
1

T
log z

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x
x
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x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

s-plane

z-plane

1

j ωs
2

−j ωs
2

jω1

−jω1

jω2 ω1T

−ω1T

ω2T

Constant frequency lines: s = σ + jω, with ω constant, |z| = eσT e jωT .
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Sampling and reconstruction (5/5)

z = esT s =
1

T
log z

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

s-plane
z-plane

1

j ωs
2

−j ωs
2

Constant damping-ratio lines: s = −ζωn + jωn

√

1− ζ2, with ωn > 0, 0 < ζ < 1 constant,

|z| = e−ζTωn , ∠z =
√

1− ζ2ωnT . The locus on the z-plane is a logarithmic spiral.
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Sampling and reconstruction (5/5)

z = esT s =
1

T
log z
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0.985
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Constant ζ and ωn loci in the s-plane (left) and in the z-plane (right).
Note that in the s-plane the loci are orthogonal.
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Outline

◮ Introduction to digital control systems

◮ Z-transform: definition, properties and theorems

◮ Sampling and reconstruction

◮ The pulse transfer function

◮ Stability and performance

◮ Control design (discretization, W -plane, root locus and analytical methods)

◮ State space approach

◮ Optimal control (dynamic programming and LQR)

◮ Some advanced topics
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The pulse transfer function

Consider a continuous-time system between two impulsive samplers.

x(t)

δT (t)

δT (t)

x⋆(t)
G(s)

y(t)

y⋆(t)

Let x⋆(t) =
∞
∑

k=0

x(kT )δ(t − kT ). Then (recall that L−1(G(s)L(δ(t − kT ))) = g(t − kT ))

y(t) =































g(t)x(0) if 0 ≤ t < T

g(t)x(0) + g(t − T )x(T ) if T ≤ t < 2T

.

..

g(t)x(0) + g(t − T )x(T ) + · · ·+ g(t − kT )x(kT ) if kT ≤ t < (k + 1)T

and since g(t) = 0 for t < 0

y(t) = g(t)x(0) + g(t − T )x(T ) + · · ·+ g(t − kT )x(kT ) if 0 ≤ t < (k + 1)T .
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The pulse transfer function

x(t)

δT (t)

δT (t)

x⋆(t)
G(s)

y(t)

y⋆(t)

x⋆(t) =
∞
∑

k=0

x(kT )δ(t − kT ) ⇒ y(t) =
k
∑

h=0

g(t − hT )x(hT ) if 0 ≤ t < (k + 1)T

⇓

y(kT ) =

k
∑

h=0

g(kT − hT )x(hT )

and, by the real convolution Theorem,

Y (z) = G(z)X (z),

where
G(z) = Z(L−1(G(s))) , Z(G(s)).
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The pulse transfer function

x(t)

δT (t)

δT (t)

x⋆(t)
G(s)

y(t)

y⋆(t)

⇓

X (z) Y (z)
G(z)

The discrete-time description provides information only at sampling instants.
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The pulse transfer function - Block diagrams
(1/4)

The definition of pulse transfer function is useful to obtain discrete-time transfer functions for
interconnected systems in the presence of sampling devices.

Note that the presence of samplers complicates the algebra of block diagrams, since the existence
and expression of any input-output function depend on the number and location of the samplers.

δT (t)δT (t)

x(t) x⋆(t) y(t) y⋆(t)
G(s) ⇒ Y (z) = G(z)X (z)

δT (t)

x(t) y(t) y⋆(t)
G(s) ⇒

Y (z) = Z(G(s)X (s))
The transfer function is

not defined
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The pulse transfer function - Block diagrams
(2/4)

δT (t)δT (t) δT (t)

x(t) x⋆(t) u(t) u⋆(t) y(t) y⋆(t)
G(s) H(s) ⇒ Y (z) = G(z)H(z)X (z)

δT (t) δT (t)

x(t) x⋆(t) y(t) y⋆(t)
G(s) H(s) ⇒ Y (z) = Z(G(s)H(s))X (z)

δT (t) δT (t)

x(t) u(t) u⋆(t) y(t) y⋆(t)
G(s) H(s) ⇒

Y (z)=Z(H(s))Z(G(s)X (s))
The transfer function is

not defined

For ease of notation Z(G(s)X (s)) = Z(GX (s)) = GX (z).
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The pulse transfer function - Block diagrams
(3/4)

δT (t) δT (t)

r(t) e(t) e⋆(t) y(t) y⋆(t)+

−
G(s)

H(s)

E(s) = R(s)− H(s)Y (s)
Y (s) = G(s)E⋆(s)

⇒ E(s) = R(s)− H(s)G(s)E⋆(s)
Y (s) = G(s)E⋆(s)

⇓
Y ⋆(s) =

G⋆(s)

1 + [H(s)G(s)]⋆
R⋆(s) ⇐ E⋆(s) = R⋆(s)− [H(s)G(s)]⋆E⋆(s)

Y ⋆(s) = G⋆(s)E⋆(s)

⇓
Y (z)

R(z)
=

G(z)

1 + GH(z)
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The pulse transfer function - Block diagrams
(4/4)

To determine the transfer function of general interconnected systems the following systematic
procedure can be used.

(1) Introduce a variable, with name Xi (s), at the input of each sampler and a variable, with
name X⋆

i (s), at the output of each sampler.

(2) Express the input variables Xi (s) of the samplers and the output variables of the system in
terms of the output X⋆

i (s) of the samplers and of the input variables of the system.

(3) Trasform the equations in (2) in terms of sampled quantities.

(4) Solve the equations in (3) to derive a relation between sampled input and output signals.

(5) Express the result obtained in (4) in terms of z-transforms.
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Outline

◮ Introduction to digital control systems

◮ Z-transform: definition, properties and theorems

◮ Sampling and reconstruction
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◮ Stability and performance
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◮ Some advanced topics
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Stability and performance

R(z) E(z) U(z) Y (z)+

−
G(z)C(z)

Consider a unity feedback discrete-time system.

Assume

• G(z) =
NG (z)

DG (z)
and C(z) =

NC (z)

DC (z)
, with NG (z), DG (z), NC (z), DC (z) polynomials;

• DG (z) and DC (z) are monic;

• the relative degree rG of G(z) (i.e. rG = degDG (z)− degNG (z)) is non-negative;

• the relative degree rC of C(z) (i.e. rC = degDC (z)− degNC (z)) is non-negative;

• rG + rC ≥ 1;

• the polynomials NG (z)NC (z) and DG (z)DC (z) are co-prime (i.e. they have no common
root).
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Stability and performance

R(z) E(z) U(z) Y (z)+

−
G(z)C(z)

Stability and performance properties of the feedback system are properties of the characteristic
polynomial of the system, i.e. of the polynomial

DG (z)DC (z) + NG (z)NC (z) = num(1 + C(z)G(z))

and of the closed-loop transfer functions that can be obtained considering, for example, the
input R(z) and the outputs Y (z), E(z), U(z), i.e.

Y (z)

R(z)
=

C(z)G(z)

1 + C(z)G(z)
,

E(z)

R(z)
=

1

1 + C(z)G(z)
,

U(z)

R(z)
=

C(z)

1 + C(z)G(z)
.

Dr. G. Scarciotti
Digital Control Systems
37/77



Stability (1/5)

R(z) E(z) U(z) Y (z)+

−
G(z)C(z)

Let

1 + C(z)G(z) =
P(z)

D(z)
=

a0z
n + a1z

n−1 + · · · an−1z + an

b0zn + b1zn−1 + · · · bn−1z + bn
.

If the underlying linear systems are reachable (stabilizable) and observable (detectable) then the
stability properties of the system are related to the location of the zeros of 1 + C(z)G(z), i.e. to
the location of the roots of P(z).

Note that by the stated assumptions P(z) is monic, i.e. a0 = 1.
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Stability (2/5)

R(z) E(z) U(z) Y (z)+

−
G(z)C(z)

P(z) = zn + a1z
n−1 + · · · an−1z + an

• The system is asymptotically stable if and only if all roots of P(z) are in D−.

• The system is stable if all roots of P(z) are in D− ∪ D0 and the roots in D0 are simple.
(D0 denotes the boundary of the unity disk.)

• The system is unstable if P(z) has roots in D+ or multiple roots on D0.
(D+ denotes the exterior of the unity disk.)
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Stability (2/5)

R(z) E(z) U(z) Y (z)+

−
G(z)C(z)

P(z) = zn + a1z
n−1 + · · · an−1z + an

• The system is unstable if P(z) has roots in D+ or multiple roots on D0.
(D+ denotes the exterior of the unity disk.)

Be careful: A “simple root” is a root with multiplicity 1. A “multiple root” is a root with
multiplicity larger than 1, also called a “repeated root”. For example, in the equation
(z − 1)2 = 0, 1 is a multiple root because it has multiplicity 2. Thus, examples of polynomials
with multiple roots in D0 are, for instance, (z2 + 1)2 = 0 [roots: +i ,+i ,−i ,−i ] or z3 = 0 [roots:
0, 0, 0]. Note that “multiple” DOES NOT mean “more than one”. For example z(z2 + 1) = 0
has more than one root but it does not have multiple roots in D0 because it has 3 simple roots
(0,+i ,−i) in D0 (that is, all the roots are different and so have multiplicity 1).
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Stability (2/5)

R(z) E(z) U(z) Y (z)+

−
G(z)C(z)

P(z) = zn + a1z
n−1 + · · · an−1z + an

• The system is asymptotically stable if and only if all roots of P(z) are in D−.

Asymptotic stability implies that

• the impulse response of any closed-loop transfer function is bounded and converges to zero
for k → ∞;

• any bounded input sequence yields a bounded output sequence.
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Stability (3/5)

Stability of the system can be assessed with various methods.

• Compute the roots of P(z).

• Develop algorithms that locate the roots of P(z) with respect to D0 without computing
the roots.

• Use graphical methods exploiting the frequency response of the system.

The first method is computationally expensive (may be numerically ill-posed) and yields
information which is not needed.

The second method is similar in spirit to Routh criterion, which however locates the roots of a
polynomial with respect to the imaginary axis.

The third method requires to sketch the graph of the frequency response of the open-loop
transfer function. Since the frequency response is a transcendental function it may be difficult to
obtain such a graph.
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Stability (4/5)

Consider the polynomial
P(z) = zn + a1z

n−1 + · · · an−1z + an

and the bilinear transformation

z =
1 + w

1− w
w =

z − 1

z + 1
.

The bilinear transformation maps the set |z| = 1 into Re(w) = 0, the set |z| < 1 into
Re(w) < 0, and the set |z| > 1 into Re(w) > 0.
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Stability (4/5)

Consider the polynomial
P(z) = zn + a1z

n−1 + · · · an−1z + an

and the bilinear transformation

z =
1 + w

1− w
w =

z − 1

z + 1
.

The bilinear transformation maps the set |z| = 1 into Re(w) = 0, the set |z| < 1 into
Re(w) < 0, and the set |z| > 1 into Re(w) > 0.

Proof. Let w = σ + jω and note that

|z| =
∣

∣

∣

∣

1 + w

1− w

∣

∣

∣

∣

=

∣

∣

∣

∣

1 + σ + jω

1− σ − jω

∣

∣

∣

∣

=

√

(1 + σ)2 + ω2

√

(1− σ)2 + ω2
.

Hence
|z| = 1 ⇒ (1 + σ)2 + ω2 = (1− σ)2 + ω2 ⇒ σ = 0
|z| < 1 ⇒ (1 + σ)2 + ω2 < (1− σ)2 + ω2 ⇒ σ < 0
|z| > 1 ⇒ (1 + σ)2 + ω2 > (1− σ)2 + ω2 ⇒ σ > 0
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Stability (4/5)

Consider the polynomial
P(z) = zn + a1z

n−1 + · · · an−1z + an

and the bilinear transformation

z =
1 + w

1− w
w =

z − 1

z + 1
.

The bilinear transformation maps the set |z| = 1 into Re(w) = 0, the set |z| < 1 into
Re(w) < 0, and the set |z| > 1 into Re(w) > 0.

The bilinear transformation is not the only one with the above properties. The transformation

z =
1 + wT

2

1− wT
2

w =
2

T

z − 1

z + 1

with T > 0 has the same properties.
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Stability (4/5)

Consider the polynomial
P(z) = zn + a1z

n−1 + · · · an−1z + an

and the bilinear transformation

z =
1 + w

1− w
w =

z − 1

z + 1
.

The bilinear transformation maps the set |z| = 1 into Re(w) = 0, the set |z| < 1 into
Re(w) < 0, and the set |z| > 1 into Re(w) > 0.

The w -plane is similar to the s-plane, but it is not equivalent to it. The mapping between z and
s is given by

z = esT =
esT/2

e−sT/2
≈

1 + sT
2

1− sT
2

=
1 + w

1− w
w =

sT

2

hence the mapping between z and w is an approximation of the mapping between z and s.
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Stability (4/5)

Consider the polynomial
P(z) = zn + a1z

n−1 + · · · an−1z + an

and the bilinear transformation

z =
1 + w

1− w
w =

z − 1

z + 1
.

The bilinear transformation yields

P̃(w) = P

(

1 + w

1− w

)

=

(

1 + w

1− w

)n

+ a1

(

1 + w

1− w

)n−1

+ · · ·+ an−1

(

1 + w

1− w

)

+ an.

⇓

The roots of P(z) are in a one-to-one correspondence
with the zeros of the rational function P̃(w).
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Stability (4/5)

Consider the polynomial
P(z) = zn + a1z

n−1 + · · · an−1z + an

and the bilinear transformation

z =
1 + w

1− w
w =

z − 1

z + 1
.

The bilinear transformation yields

P̃(w) = P

(

1 + w

1− w

)

=

(

1 + w

1− w

)n

+ a1

(

1 + w

1− w

)n−1

+ · · ·+ an−1

(

1 + w

1− w

)

+ an.

⇓

The roots of P(z) are in a one-to-one correspondence
with the roots of the polynomial Q(w) = numP̃(w).
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Stability (4/5)

Consider the polynomials

P(z) = zn + a1z
n−1 + · · ·+ an−1z + an Q(w) = q0w

n + q1w
n−1 + · · ·+ qn−1w + qn.

Note that q0 = 0 if and only if P(−1) = 0, i.e. Q(w) has degree smaller than n if and only if
P(z) has roots for z = −1.

P(z) has all roots in D− if and only if Q(w) has all roots in C−.

The number of roots of P(z) in D− (D+, resp.) coincides with the
number of roots of Q(w) in C− (C+, resp.).

If q0 6= 0, the number of roots of P(z) in D0 coincides with the
number of roots of Q(w) in C0.

Stability of a discrete-time system can be assessed
with Routh test.
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Routh Theorem - Recall – Stability (4/5)

Given: ϕ(s) = ϕ0s
n + ϕ1s

n−1 + · · ·+ ϕn−1s + ϕn we build the table

n + 1 rows



























































n ϕ0 ϕ2 ϕ4 · · ·
n − 1 ϕ1 ϕ3 ϕ5 · · ·

..

.
..
.

..

.
..
. · · ·

i h1 h2 h3 · · ·
i − 1 k1 k2 k3 · · ·
i − 2 l1 l2 l3 · · ·
..
.

..

.
..
.

..

. · · ·
0

To compute the next line of coefficients

l1 = − 1

k1
det

[

h1 h2
k1 k2

]

l2 = − 1

k1
det

[

h1 h3
k1 k3

]

and in general

lj = − 1

k1
det

[

h1 hj+1

k1 kj+1

]
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Routh Theorem - Recall – Stability (4/5)

Routh-Hurwitz theorem

If the Routh table is well-defined (that is, if the elements of the first column are not zero except
at most the last one), then:

◮ The number of roots with positive real part is equal to the number of sign-changes in the
first column of the Routh table.

◮ The number of roots with negative real part is equal to the number of sign-permanences in
the first column of the Routh table.
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Stability (5/5)

Consider a discrete-time system with transfer function G(z). The function

G(e jωT ) 0 ≤ ω ≤ π

T

is the frequency response of the system.

• The frequency response is a trascendental function.

• The frequency response is defined for 0 ≤ ω ≤ π
T
, since it is periodic of period ωs = 2π

T
and for negative ω takes complex conjugate values, i.e.

G(e j(ω+kωs )T ) = G(e jωT ) G(e j(−ω)T ) = Ḡ(e jωT ).

• If G(z) has all poles inside D−, i.e. the system is asymptotically stable, then the frequency
response allows to describe the steady-state response of the output of the system to a
sinusoidal input:

x(kT ) = sin kω̃T ⇒ y(kT ) = A sin(kω̃T + φ)

where
A = |G(e jω̃T )| φ = ∠G(e jω̃T ).
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Stability (5/5)

R(z) E(z) Y (z)+

−
F (z)

Consider a unity feedback discrete-time system with open loop transfer function F (z).

Consider the image on the complex plane of the frequency response function

F (e jωT ) − π

T
≤ ω ≤ π

T
.

This image is called the Nyquist diagram of F (z).

If F (z) does not have poles on D0 the Nyquist diagram is a closed curve.

If F (z) has poles on D0 the Nyquist diagram contains the point at infinity (i.e. it is closed at
infinity).
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Stability (5/5)

R(z) E(z) Y (z)+

−
F (z)

Consider a unity feedback discrete-time system with open loop transfer function F (z).

Consider the image on the complex plane of the frequency response function

F (e jωT ) − π

T
≤ ω ≤ π

T
.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
−3

−2

−1

0

1

2

3

Nyquist Diagram

Real Axis

Im
ag

in
ar

y 
A

xi
s

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−10

−8

−6

−4

−2

0

2

4

6

8

10

Nyquist Diagram

Real Axis

Im
ag

in
ar

y 
A

xi
s

Dr. G. Scarciotti
Digital Control Systems
43/77



Stability (5/5)

Nyquist criterion I

Consider the function F (z). Assume all poles of F (z) are in D−, with the exception of a single
or double pole at z = 1.

The closed-loop system is asymptotically stable if and only if the Nyquist diagram of F (z) does
not encircle the point −1 + j0.
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Stability (5/5)

Nyquist criterion I

Consider the function F (z). Assume all poles of F (z) are in D−, with the exception of a single
or double pole at z = 1.

The closed-loop system is asymptotically stable if and only if the Nyquist diagram of F (z) does
not encircle the point −1 + j0.

Nyquist criterion II

Consider the function F (z). Assume F (z) does not have poles on D0, with the exception of a
single or double pole at z = 1.

The closed-loop system is asymptotically stable if and only if the number of anti-clock-wise
encirclements of −1 + j0 of the Nyquist diagram of F (z) equals the number of poles of F (z) in
D+.
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Stability (5/5) – Example

Consider the discrete-time transfer function

F (z) =
z

(z − 1)(z − 1/2)
.

The frequency response function is

F (e jωT ) =
e jωT

(e jωT − 1)(e jωT − 1/2)

Note that

F (e jωT ) ≈











2
jωT

if |ω| ≪ 1

−1/3 if |ω| ≈ π

T

and that

F (e jωT ) = − 1

α
,

for some α > 0, only if ω = ± π
T
, yielding α = 3.
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Stability (5/5) – Example

Consider the discrete-time transfer function

F (z) =
z

(z − 1)(z − 1/2)
.
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−20
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20
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The closed-loop system is asymptotically stable. Moreover, the closed-loop system with
open-loop transfer function kF (z) is asymptotically stable for all k ∈ (0, 3).
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Performance (1/5)

HoldC(z) P(s)

HP(z)

Y (z)R(s) E(z)+

−

Consider a computer controlled system, i.e. a continuous-time system, with transfer function
P(s), interconnected by means of sampling and hold devices, to a discrete-time controller, with
transfer function C(z).

The performance of the control system can be quantified in terms of the following indicators.
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HoldC(z) P(s)

HP(z)

Y (z)R(s) E(z)+
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Consider a computer controlled system, i.e. a continuous-time system, with transfer function
P(s), interconnected by means of sampling and hold devices, to a discrete-time controller, with
transfer function C(z).

The performance of the control system can be quantified in terms of the following indicators.

• Nominal stability.
The closed-loop system should be asymptotically stable.

Dr. G. Scarciotti
Digital Control Systems
44/77



Performance (1/5)

HoldC(z) P(s)

HP(z)

Y (z)R(s) E(z)+

−

Consider a computer controlled system, i.e. a continuous-time system, with transfer function
P(s), interconnected by means of sampling and hold devices, to a discrete-time controller, with
transfer function C(z).

The performance of the control system can be quantified in terms of the following indicators.

• Nominal stability.

• Robust stability.
The stability properties of the closed-loop system should be preserved in the presence of
(small) perturbations on the plant. (The closed-loop system should possess certain stability
margins.)
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Performance (1/5)

HoldC(z) P(s)

HP(z)

Y (z)R(s) E(z)+

−

Consider a computer controlled system, i.e. a continuous-time system, with transfer function
P(s), interconnected by means of sampling and hold devices, to a discrete-time controller, with
transfer function C(z).

The performance of the control system can be quantified in terms of the following indicators.

• Nominal stability.

• Robust stability.

• Steady-state accuracy.
The steady-state response of the closed-loop system to classes of input signals (references,
disturbances) should possess specific properties.
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Performance (1/5)

HoldC(z) P(s)

HP(z)

Y (z)R(s) E(z)+

−

Consider a computer controlled system, i.e. a continuous-time system, with transfer function
P(s), interconnected by means of sampling and hold devices, to a discrete-time controller, with
transfer function C(z).

The performance of the control system can be quantified in terms of the following indicators.

• Nominal stability.

• Robust stability.

• Steady-state accuracy.

• Transient response.
The dynamic behaviour of the output of the closed-loop system should be within specific
bounds, given in terms of overshot, settling time, ....
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Performance (1/5)

HoldC(z) P(s)

HP(z)

Y (z)R(s) E(z)+

−

Consider a computer controlled system, i.e. a continuous-time system, with transfer function
P(s), interconnected by means of sampling and hold devices, to a discrete-time controller, with
transfer function C(z).

The performance of the control system can be quantified in terms of the following indicators.

• Nominal stability.

• Robust stability.

• Steady-state accuracy.

• Transient response.

• Disturbance rejection/attenuation.
The effect of classes of disturbances on the output of the closed-loop system
should be small.
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Performance (1/5)

HoldC(z) P(s)

HP(z)

Y (z)R(s) E(z)+

−

Consider a computer controlled system, i.e. a continuous-time system, with transfer function
P(s), interconnected by means of sampling and hold devices, to a discrete-time controller, with
transfer function C(z).

The performance of the control system can be quantified in terms of the following indicators.

• Nominal stability.

• Robust stability.

• Steady-state accuracy.

• Transient response.

• Disturbance rejection/attenuation.
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Steady-state accuracy – Performance (2/5)

HoldC(z) P(s)

HP(z)

Y (z)R(s) E(z)+

−

Consider a computer controlled system. Assume that the hold device is a zero-order hold.

The discrete-time description of the plant is given by

HP(z) = Z(H0(s)P(s)) = (1− z−1)Z

(

P(s)

s

)

,

hence the open loop transfer function is

G(z) = C(z)HP(z)

and

E(z) =
1

1 + G(z)
R(z).
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Steady-state accuracy – Performance (2/5)

HoldC(z) P(s)

HP(z)

Y (z)R(s) E(z)+

−

Assume the closed-loop system is stable. Let r(k) = 1, i.e. R(z) = 1
1−z−1 . Then

ep = lim
z→1

(1− z−1)E(z) = lim
z→1

(1− z−1)
1

1 + G(z)

1

1− z−1
=

1

1 + kp
,

where
kp = lim

z→1
G(z) (position constant)

ep = 0 if and only if kp = ∞, i.e. G(z) has at least one pole at z = 1.

The type of the feedback system is determined by the number
of poles of the open-loop transfer function at z = 1.

The steady-state error for constant reference input signals is zero
if and only if the system is of type at least 1.
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Steady-state accuracy – Performance (2/5)

HoldC(z) P(s)

HP(z)

Y (z)R(s) E(z)+

−

Assume the closed-loop system is stable. Let r(k) = kT , i.e. R(z) = Tz−1

(1−z−1)2
. Then

ev = lim
z→1

(1− z−1)E(z) = lim
z→1

(1− z−1)
1

1 + G(z)

Tz−1

(1− z−1)2
= lim

z→1

T

(1− z−1)G(z)
.

Let

kv = lim
z→1

(1− z−1)G(z)

T
(velocity constant)

then

ev =
1

kv
.

ev is finite if and only if kv 6= 0, i.e. the system is of type at least 1.

ev = 0 if and only if kv = ∞, i.e. the system is of type at least 2.
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Steady-state accuracy – Performance (2/5)

HoldC(z) P(s)

HP(z)

Y (z)R(s) E(z)+

−

Assume the closed-loop system is stable. Let r(k) = 1
2
(kT )2, i.e. R(z) =

T 2(1+z−1)z−1

2(1−z−1)3
. Then

ea = lim
z→1

(1− z−1)E(z) = lim
z→1

(1− z−1)
1

1 + G(z)

T 2(1 + z−1)z−1

2(1− z−1)3
= lim

z→1

T 2

(1− z−1)2G(z)
.

Let

ka = lim
z→1

(1− z−1)2G(z)

T 2
(acceleration constant)

then

ea =
1

ka
.

ea is finite if and only if ka 6= 0, i.e. the system is of type at least 2.

ea = 0 if and only if ka = ∞, i.e. the system is of type at least 3.
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Steady-state accuracy – Performance (2/5)

HoldC(z) P(s)

HP(z)

Y (z)R(s) E(z)+

−

System\Input r(k) = 1 r(k) = kT r(k) =
1

2
(kT )2 · · ·

Type 0
1

1 + Kp
∞ ∞ · · ·

Type 1 0
1

Kv
∞ · · ·

Type 2 0 0
1

Ka

. . .

.

.

.
.
.
.

.

.

.
. . .

. . .
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Transient response – Performance (3/5)

Delay time td - Rise time tr - Peak time tp - Maximum overshoot Mp - Settling time ts
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Disturbance reject./atten. – Performance (4/5)

R(z) = 0
Y (z)

D(z)

C(z) P(z)

The closed-loop pulse transfer function from D(z) to Y (z) is

Y (z)

D(z)
=

P(z)

1 + C(z)P(z)
.

If |C(z)P(z)| >> 1 then we have
Y (z)

D(z)
≈ 1

C(z)

and the system error is

E(z) = R(z)− Y (z) = − 1

C(z)
D(z)
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Disturbance reject./atten. – Performance (4/5)

R(z) = 0
Y (z)

D(z)

C(z) P(z)

Assume that C(z) has a pole at z = 1, i.e. C(z) =
Ĉ(z)z−1

1− z−1
where Ĉ(z) does not have zeros at

z = 1. Let d(k) = N, i.e. D(z) =
N

1− z−1
. Then

ess = lim
z→1

(1− z−1)E(z) = lim
z→1

(1− z−1)
−1

C(z)

N

1− z−1
= − lim

z→1

(1− z−1)N

Ĉ(z)z−1
= 0,

If R(z) 6= 0 then a new analysis should be carried out since both the reference input and the
disturbance will contribute to the steady-state error.
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Disturbance reject./atten. – Performance (4/5)

R(z) = 0
Y (z)

D(z)

C(z) P(z)

The point where the disturbance enters is very important! The closed-loop pulse transfer
function from D(z) to Y (z) is

Y (z)

D(z)
= − E(z)

D(z)
=

1

1 + C(z)P(z)

thus the gain of C(z)P(z) must be made as large as possible.
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Disturbance reject./atten. – Performance (4/5)

R(z) = 0
Y (z)

D(z)

C(z) P(z)

The closed-loop pulse transfer function from D(z) to Y (z) is

Y (z)

D(z)
= − C(z)P(z)

1 + C(z)P(z)

thus the gain of C(z)P(z) must be made as small as possible.
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Performance (5/5)

Dynamic properties of continuous-time control systems can be expressed in terms of the location
on the s-plane of the closed-loop poles, i.e. in terms of their natural frequencies and damping
coefficients.

For discrete-time systems it is necessary to consider the location of the closed-loop poles in the
z-plane.

The s- and z-planes are related by the equations

z = esT s =
1

T
log z

which allows to determine dynamic properties of discrete-time control systems from dynamic
properties of continuous-time control systems.

The closed-loop poles of a discrete-time dynamical system are (in general) more sensitive to
parameter variations than those of continuous-time systems.
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Outline

◮ Introduction to digital control systems

◮ Z-transform: definition, properties and theorems

◮ Sampling and reconstruction

◮ The pulse transfer function

◮ Stability and performance

◮ Control design (discretization, W -plane, root locus and analytical methods)

◮ State space approach

◮ Optimal control (dynamic programming and LQR)

◮ Some advanced topics
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Control design

The design of computer controlled systems can be performed from different perspectives.

• Indirect method.
Controller design is performed in continuous-time, for example in the Laplace domain. The
continuous-time controller is then transformed into a discrete-time controller with
conversion algorithms.

• Direct method.

Controller design is performed in discrete-time. The design can be performed

- in the frequency domain (w -plane design);
- in the z-domain (root locus design);
- with analytical methods.

• Standard regulators.
Controller design is performed in discrete-time. The structure of the controller is fixed (e.g.
PID type), and the controller has to be tuned.
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Control design – Warning on pole-zero
cancellations

Illicit cancellations (continuous-time, discrete-time)

Unstable poles must not be canceled with unstable zeros. An unstable pole-zero cancellation is
illicit!

In continuous-time, we cannot cancel poles and zeros which do not lie on the complex left
half-plane. In discrete-time, we cannot cancel poles and zeros which do not lie inside the unit
circle.

The reason for this is that, even though the pole will not show up in the response to the input, it
will still appear as a result of any initial condition of the system, or due to additional inputs
entering the system (such as disturbances). If the pole and zero are in the unstable region of the
plane, the system response might blow up due to these initial conditions or disturbances, even
though the input of the system is bounded.

Approximate cancellations (discrete-time)

Remember that numerous approximations have been performed to obtain HP(z). The poles and
zeros of HP(z) are approximations! When we cancel these poles or zeros we do not really cancel
them but place an additional zero or pole close to these approximated poles. Hence, the final
closed-loop system should be tested to verify that the approximations do not disrupt the design.
This is specially true for poles and zeros close to the stability margin.
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Control design – Indirect method

PlantController
r(s) e(s) u(s) y(s)+

−

Consider a unity feedback continuous-time system, with plant P(s) and controller C(s).

Suppose the controller C(s) is fixed and consider the problem of designing a discrete-time
controller C(z) such that the closed-loop system, with such controller and the sampler and hold
devices, has performance as close as possible to the performance of the continuous-time
closed-loop system.

Continuous-time
plant

Digital
controller

A/D

D/A Hold
r(z) e(z) y(s)+

−
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Control design – Indirect method

Consider a unity feedback continuous-time system, with plant P(s) and controller C(s).

Suppose the controller C(s) is fixed and consider the problem of designing a discrete-time
controller C(z) such that the closed-loop system, with such controller and the sampler and hold
devices, has performance as close as possible to the performance of the continuous-time
closed-loop system.

It is obvious that the use of a discrete-time controller, obtained by means of some discretization
algorithm, modifies the performance of the closed-loop system.

These modifications depend upon the discretization algorithm and the sampling time.

In general, the discretization algorithm preserves some of the following properties:

- number of poles and/or zeros;

- invariance of the impulse/step response;

- DC-gain;

- stability margins and/or bandwidth.
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Control design – Indirect method – Design
steps

Once the continuous-time controller has been selected, the design procedure is composed of the
following steps.

• Definition of the sampling time T .

• Preliminary analysis of the effect of the digital implementation on stability and
performance, and redesign, if necessary, of C(s).
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Control design – Indirect method – Design
steps

Once the continuous-time controller has been selected, the design procedure is composed of the
following steps.

• Definition of the sampling time T .

• Preliminary analysis of the effect of the digital implementation on stability and
performance, and redesign, if necessary, of C(s).

The effect of the digital implementation can be evaluated considering an approximation of
the hold. For a ZOH we could use

H0(s) ≈
T

T
2
s + 1

(Padè approximation) H0(s) ≈ Te−sT/2.

Note that a factor T should be removed since it is compensated for by the gain 1/T of the
sampler, e.g. the effect of the hold should be approximated by 1

T
2
s+1

.
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Control design – Indirect method – Design
steps

Once the continuous-time controller has been selected, the design procedure is composed of the
following steps.

• Definition of the sampling time T .

• Preliminary analysis of the effect of the digital implementation on stability and
performance, and redesign, if necessary, of C(s).

• Discretization of C(s).
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Control design – Indirect method – Design
steps

Once the continuous-time controller has been selected, the design procedure is composed of the
following steps.

• Definition of the sampling time T .

• Preliminary analysis of the effect of the digital implementation on stability and
performance, and redesign, if necessary, of C(s).

• Discretization of C(s).

• Analysis, a-posteriori, of the dynamic behaviour of the closed-loop system.

It is necessary to obtain the discrete-time equivalent description of the continuous-time
plant, and to analise the discrete-time closed-loop system.
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Control design – Indirect method – Selection of
T

The sampling time T has to be selected on the basis of the following considerations.

- If the frequency response of C(s) is of low-pass type, ωs should be significantly larger than
the cut-off frequency.

- The sampling time should be consistent with the dynamic properties of the
continuous-time closed-loop system.

If the continuous-time closed-loop system is required to have a settling time ts (e.g. for the
step response) then

T ∈
[

ts

10
,
ts

4

]

is a good selection.

If the continuous-time closed-loop system has dominant poles with natural frequencies ωn,
then

T ∈
[

1

10

2π

ωn
,
1

4

2π

ωn

]

is a good selection.
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Control design – Indirect method –
Discretization

The process of discretization is used to obtain a discrete-time transfer function C(z) from the
continuous-time transfer function C(s).

- Backward difference (not stability preserving).

C(z) = C(s)|
s= 1−z−1

T

- Forward difference (not stability preserving).

C(z) = C(s)|
s= z−1

T

- Bilinear or Tustin transformation (stability preserving).

C(z) = C(s)|
s= 2

T
1−z−1

1+z−1

- Bilinear or Tustin transformation with pre-warping (stability preserving).

C(z) = C(s)|
s=

ω1

tan
ω1T
2

1−z−1

1+z−1
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Control design – Indirect method –
Discretization

- Impulse response invariance (stability preserving).

C(z) = Z(L−1(C(s)))

- Step response invariance/zero-order hold equivalent (stability preserving).

C(z) = (1− z−1)Z

(

L−1

(

C(s)

s

))

- Pole-zero correspondance (stability preserving).

s + a −→ 1− e−aT z−1

Zeroes at s = ∞ are mapped into zeroes at z = −1, and the gain at s = 0 (s = ∞) is
matched at z = 1 (z = −1), for low-pass (high-pass) C(s). For example

C(s) =
a

s + a
−→ C(z) = k

a(1 + z−1)

1− e−aT z−1

with k such that C(s)|s=0 = C(z)|z=1, i.e.

k =
1− e−aT

2a
.
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Control design – Direct method – w -plane
design

The bilinear transformation and its inverse, namely

z =
1 + wT

2

1− wT
2

and w =
2

T

z − 1

z + 1
,

relate the z-plane to an auxiliary plane, the w -plane, which approximates the s-plane.

Using the variable w as the Laplace variable s, it is possible to design control laws with classical
(frequency-domain) methods.

The design procedure yields a control law C(w) which has then to be transformed, using the
inverse of the bilinear transformation, into a discrete-time controller C(z).

The bilinear transformation preserves the position and velocity constants, i.e.

kp = lim
z→1

G(z) = lim
w→0

G(w) kv = lim
z→1

(1− z−1)G(z)

T
= lim

w→0
wG(w),

hence steady-state accuracy for step and ramp reference inputs is preserved.
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Control design – Direct method – w -plane
design – Design steps

The design procedure is composed of the following steps.

• Definition of the sampling time T .
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Control design – Direct method – w -plane
design – Design steps

The design procedure is composed of the following steps.

• Definition of the sampling time T .

The sampling time may be computed on the basis of the desired dynamic response of the
closed-loop system or as a fraction (1/2 to 1/10) of the fastest time constant of the plant.
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Control design – Direct method – w -plane
design – Design steps

The design procedure is composed of the following steps.

• Definition of the sampling time T .

• Computation of the discrete-time equivalent transfer function HP(z) of the system to be
controlled connected to the hold.
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Control design – Direct method – w -plane
design – Design steps

The design procedure is composed of the following steps.

• Definition of the sampling time T .

• Computation of the discrete-time equivalent transfer function HP(z) of the system to be
controlled connected to the hold.

• Transformation of HP(z) into HP(w).

Note that HP(w) has, in general, relative degree zero, even if the relative degree of HP(s)
is positive, and may be non-minimum phase, even if HP(s) is not.
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Control design – Direct method – w -plane
design – Design steps

The design procedure is composed of the following steps.

• Definition of the sampling time T .

• Computation of the discrete-time equivalent transfer function HP(z) of the system to be
controlled connected to the hold.

• Transformation of HP(z) into HP(w).

• Determine the gain K to satisfy the requirement on a given error constant.
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Control design – Direct method – w -plane
design – Design steps

The design procedure is composed of the following steps.

• Definition of the sampling time T .

• Computation of the discrete-time equivalent transfer function HP(z) of the system to be
controlled connected to the hold.

• Transformation of HP(z) into HP(w).

• Determine the gain K to satisfy the requirement on a given error constant.

• Design, using continuous-time (frequency-domain) methods, of the controller C(w) for
KHP(w).

Dr. G. Scarciotti
Digital Control Systems
57/77



Control design – Direct method – w -plane
design – Design steps

The design procedure is composed of the following steps.
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Control design – Direct method – w -plane
design – Design steps

The design procedure is composed of the following steps.

• Definition of the sampling time T .

• Computation of the discrete-time equivalent transfer function HP(z) of the system to be
controlled connected to the hold.

• Transformation of HP(z) into HP(w).

• Determine the gain K to satisfy the requirement on a given error constant.

• Design, using continuous-time (frequency-domain) methods, of the controller C(w) for
KHP(w).

• Transformation of C(w) into C(z).

• Analysis, a-posteriori, of the dynamic behaviour of the closed-loop system.
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Control design – Direct method – w -plane
design – Example

Consider a plant P(s) = K
s(s+1)

interconnected to a compensator C(z) by means of a zero-order

hold. Design a digital controller in the w plane such that the phase margin is 50◦ and the static
velocity constant Kv is 2 sec−1. Assume the sampling time is T = 0.2.

HP(z) = Z

(

1− e−0.2s

s

K

s(s + 1)

)

= (1− z−1)Z

(

K

s2(s + 1)

)

=
K(0.01873z + 0.01752)

(z2 − 1.8187z + 0.8187)

We transform the pulse transfer function into the w domain.

HP(w) =
K(0.01873

(

1+0.1w
1−0.1w

)

+ 0.01752)

(
(

1+0.1w
1−0.1w

)2
− 1.8187

(

1+0.1w
1−0.1w

)

+ 0.8187)
=

K(−0.000333w2 − 0.09633w + 0.9966)

w2 + 0.9969w

We try with a phase-lead compensator

C(w) =
1 + τw

1 + τ
m
w
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Control design – Direct method – w -plane
design – Example

Consider a plant P(s) = K
s(s+1)

interconnected to a compensator C(z) by means of a zero-order

hold. Design a digital controller in the w plane such that the phase margin is 50◦ and the static
velocity constant Kv is 2 sec−1. Assume the sampling time is T = 0.2.

C(w) =
1 + τw

1 + τ
m
w

The static velocity constant Kv is given by

2 := Kv = lim
w→0

wC(w)HP(w) =
0.9966Kw

0.9969w
≈ K

Thus

HP(w) =
2(−0.000333w2 − 0.09633w + 0.9966)

w2 + 0.9969w

We now sketch the Bode plot.
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Control design – Direct method – w -plane
design – Example
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design – Example
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design – Example
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Control design – Direct method – w -plane
design – Example
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Control design – Direct method – w -plane
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Control design – Direct method – w -plane
design – Example
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−5dB is at ω = 1.77. The phase is 200◦. Phase margin would be 20◦. Total 20 + 30 = 50◦.
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Control design – Direct method – w -plane
design – Example

The phase-lead compensator

C(w) =
1 + τw

1 + τ
m
w

with m = 3, and target frequency ω = 1.77 we have τ =

√
m

ω
= 0.97856. Thus,

C(w) =
1 + τw

1 + τ
m
w

=
1 + 0.97856w

1 + 0.32619w
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Control design – Direct method – w -plane
design – Example

The phase-lead compensator

C(w) =
1 + τw

1 + τ
m
w

with m = 3, and target frequency ω = 1.77 we have τ =

√
m

ω
= 0.97856. Thus,

C(w) =
1 + τw

1 + τ
m
w

=
1 + 0.97856w

1 + 0.32619w

We can now transform the transfer function back to the z-domain

C(z) =
1 + 0.97856

(

2
T

z−1
z+1

)

1 + 0.32619
(

2
T

z−1
z+1

) =
2.5307z − 2.0614

z − 0.5307
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Control design – Direct method – Root locus
design – Design steps

The root locus can be used to design control laws for discrete-time systems.

The design procedure is composed of the following steps.

• Definition of the sampling time T .

The sampling time may be computed on the basis of the desired dynamic response of the
closed-loop system or may be assigned a-priori.
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Control design – Direct method – Root locus
design – Design steps

The root locus can be used to design control laws for discrete-time systems.

The design procedure is composed of the following steps.

• Definition of the sampling time T .

• Computation of the discrete-time equivalent transfer function HP(z) of the system to be
controlled connected to the hold.
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Control design – Direct method – Root locus
design – Design steps

The root locus can be used to design control laws for discrete-time systems.

The design procedure is composed of the following steps.

• Definition of the sampling time T .

• Computation of the discrete-time equivalent transfer function HP(z) of the system to be
controlled connected to the hold.

• Design, using the root locus, of a controller C(z) which achieves the requested
performance specifications.

The design is performed on the exact discrete-time model: no validation step is necessary.
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Control design – Direct method – Root locus
design – Rules

The characteristic equation is

1 + KF (z) = 1 + K
N(z)

D(z)

As K changes, so do the locations of the closed-loop poles. The root locus is the locus of the
poles as a function of K . To sketch the root locus follow these rules:

◮ N(z) has roots zi , i = 1, . . . ,m, D(z) has roots pi , i = 1, . . . , n. The difference between n
and m is the relative degree r = n −m.

◮ The locus is symmetric about the real axis.

◮ There are n branches of the locus, one for each closed-loop pole.

◮ The locus starts (K = 0) at poles of F (z), and ends (K → ∞) at zeros of F (z). There are
r zeros at infinity as K → ∞.

◮ The locus exists on the real axis to the left of an odd number of poles and zeros.

◮ If r > 0 there are asymptotes of the root locus that intersect the real axis at

σ =
∑n

i=1 pi−
∑m

i=1 zi
r

, and radiate out with angles θ = ±q π
r
, where q = 1, 3, 5, . . . .

◮ Break-away or break-in points of the locus exist where N(z)D′(z)− N′(z)D(z) = 0 (′

indicates the derivative).

◮ Angle of departure from complex pole pj is π +
∑m

i=1 ∠(pj − zi )−
∑n

i=1,i 6=j ∠(pj − pi ).

◮ Angle of arrival at complex zero zj is π −∑m
i=1,i 6=j ∠(zj − zi ) +

∑n
i=1 ∠(zj − pi ).
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Control design – Direct method – Root locus
design – Example

Consider a unity feedback loop in which the digital control

C(z) = K
z

z − 1

is interconnected by a zero-order hold to the plant

P(s) =
1

s + 1
.

Determine the root locus for T = 0.5, T = 1, and T = 2.

We first determine the z transform of H0(s)P(s)

G(z) = Z [H0(s)P(s)] = Z

[

1− e−Ts

s

1

s + 1

]

= (1− z−1)Z

[

1

s(s + 1)

]

=
1− e−T

z − e−T
.

The characteristic equation is 1 + C(z)G(z) = 0, with

C(z)G(z) =
Kz(1− e−T )

(z − 1)(z − e−T )
.
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Control design – Direct method – Root locus
design – Example
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Control design – Direct method – Analytical
methods

Consider a feedback control scheme with a feedback controller and a feedforward block.

Hold

Controller

R(z) U(z) Y (z)+

−

HP(z)

F (z)

C(z)

P(s)

Assume

HP(z) =
B(z)

A(z)
C(z) =

S(z)

V (z)
F (z) =

T (z)

V (z)

Analytical design methods determine the polynomials V (z), S(z) and T (z) to achieve a
pre-selected closed-loop transfer function on the basis of the equation

Y (z)

R(z)
=

B(z)T (z)

A(z)V (z) + B(z)S(z)
.
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Control design – Direct method – Analytical
methods

Consider a feedback control scheme with a feedback controller and a feedforward block.

Analytical design methods determine the polynomials V (z), S(z) and T (z) to achieve a
pre-selected closed-loop transfer function on the basis of the equation

Y (z)

R(z)
=

B(z)T (z)

A(z)V (z) + B(z)S(z)
.

In the simplest version, analytical design methods are based on the assumption

T (z) = S(z),

hence the closed-loop system can be rewritten as a standard unity feedback control system, and
the controller is selected

- to achieve the required steady-state accuracy;

- to assign the poles of the closed-loop transfer function, i.e. the zeros of the polynomial

A(z)V (z) + B(z)S(z).
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Control design – Direct method – Analytical
methods – Design steps

The design procedure is composed of the following steps.

• Selection of the desired closed-loop characteristic polynomial.

• Selection of m ≥ 0 and definition of the polynomials

V (z) = zm + v1z
m−1 + · · ·+ vm S(z) = s0z

m + s1z
m−1 + · · ·+ sm.

• Selection of the coefficients vi and si such that

- steady-state accuracy specification are satisfied;
- the closed-loop characteristic polynomial coincides with the desired polynomial.

The selection of the parameter m is based on the following considerations.

- Let n = degA(z) and assume that A(z) is monic and that HP(z) has relative degree larger
or equal to one. Then A(z)V (z) + B(z)S(z) is monic and has degree n +m.

- The free design parameters si , for i = 0, · · · ,m, and vi , for i = 1, · · · ,m, are 2m + 1.

- The design parameters should satisfy n +m conditions (to assign the zeros of the
characteristic polynomial) and p conditions to satisfy the steady-state accuracy
specifications.

- The design problem has a (unique) solution if
2m + 1 = n +m + p ⇔ m = n + p − 1.
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Outline

◮ Introduction to digital control systems

◮ Z-transform: definition, properties and theorems

◮ Sampling and reconstruction

◮ The pulse transfer function

◮ Stability and performance

◮ Control design (discretization, W -plane, root locus and analytical methods)

◮ State space approach

◮ Optimal control (dynamic programming and LQR)

◮ Some advanced topics
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State space

Discrete-time systems can be represented by nonlinear difference equations. We call the system

x(k + 1) = f (x(k), u(k), k)
y(k) = g(x(k), u(k), k)

nonlinear state-space representation. We focus our attention on linear state space systems

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

where

◮ x(k) n−vector (state vector)

◮ y(k) m−vector (output vector)

◮ u(k) r−vector (input vector)

◮ A n × n matrix (state matrix)

◮ B n × r matrix (input matrix)

◮ C m × n matrix (output matrix)

◮ D m × r matrix (feedforward matrix)

Dr. G. Scarciotti
Digital Control Systems
65/77



State space – Transfer function → State space

Many techniques are available to obtain a state-space representation of a linear discrete-time
system.

Consider the difference equation

y(k) + a1y(k − 1) + a2y(k − 2) + · · ·+ any(k − n) = b0u(k) + b1u(k − 1) + · · ·+ bnu(k − n)

The pulse transfer function of this system is

Y (z)

U(z)
=

b0 + b1z
−1 + · · ·+ bnz−n

1 + a1z−1 + · · ·+ anz−n
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State space – Transfer function → State space

The pulse transfer function of this system is

Y (z)

U(z)
=

b0 + b1z
−1 + · · ·+ bnz−n

1 + a1z−1 + · · ·+ anz−n

A state space representation of this pulse transfer function is the controllable canonical form:















x1(k + 1)
x2(k + 1)

.

.

.
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






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


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State space – Transfer function → State space

The pulse transfer function of this system is

Y (z)

U(z)
=

b0 + b1z
−1 + · · ·+ bnz−n

1 + a1z−1 + · · ·+ anz−n

Another state space representation of this pulse transfer function is the observable canonical
form:
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State space – Transfer function → State space

The pulse transfer function of this system is

Y (z)

U(z)
=

b0 + b1z
−1 + · · ·+ bnz−n

1 + a1z−1 + · · ·+ anz−n

◮ The controllable canonical form is controllable but not necessarily observable!

◮ The observable canonical form is observable but not necessarily controllable!
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State space – Response & pulse transfer matrix

Consider the linear system
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)

The state response of the system is

x(k) = Akx(0) +

k−1
∑

j=0

Ak−j−1Bu(j)

Proof:

x(1) = Ax(0) + Bu(0)

x(2) = Ax(1) + Bu(1) = A2x(0) + ABu(0) + Bu(1)

x(3) = Ax(2) + Bu(2) = A3x(0) + A2Bu(0) + ABu(1) + Bu(2)

.

.

.

x(k) = Akx(0) +
∑k−1

j=0 Ak−j−1Bu(j)
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State space – Response & pulse transfer matrix

Consider the linear system
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)

The input-output pulse transfer matrix is

Y (z)

U(z)
= C(zI − A)−1B + D

Proof:

x(k + 1) = Ax(k) + Bu(k) → zX (z)− zx(0) = AX (z) + BU(z)

→ X (z) = (zI − A)−1zx(0) + (zI − A)−1BU(z)

Moreover
x(k) = Z−1[(zI − A)−1z]x(0) + Z−1[(zI − A)−1BU(z)]

and note that the following interesting mathematical relations must hold

Ak = Z−1[(zI − A)−1z]

∑k−1
j=0 Ak−j−1B = Z−1[(zI − A)−1BU(z)]
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State space – Response & pulse transfer matrix

Consider the linear system
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)

How many state-space representations there exist for a given pulse transfer function?

Dr. G. Scarciotti
Digital Control Systems
67/77



State space – Response & pulse transfer matrix

Consider the linear system
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)

How many state-space representations there exist for a given pulse transfer function?

Infinitely many!

In fact, the system

x̂(k + 1) = Âx̂(k) + B̂u(k)

y(k) = Ĉ x̂(k) + D̂u(k)

where x(k) = Tx̂(k), with T any invertible matrix, Â = T−1AT , B̂ = T−1B, Ĉ = CT and

D̂ = D, has the same transfer function of the original system.

Proof:
Ĉ(zI − Â)−1B̂ + D̂ = CT (zI − T−1AT )−1T−1B + D

= CT (zT − AT )−1B + D

= C(zTT−1 − ATT−1)−1B + D

= C(zI − A)−1B + D

Dr. G. Scarciotti
Digital Control Systems
67/77



State space – Sampled systems

Consider the continuous-time system

ẋ(t) = Fx(t) + Gu(t)
y(t) = Cx(t) + Du(t)

and assume that the input is sampled and fed to a zero-order hold, i.e.

u(t) = u(kT ), for all kT ≤ t ≤ kT + T

The discrete-time representation of the continuous-time systems is

x((k + 1)T ) = Ax(kT ) + Bu(kT )
y(kT ) = Cx(kT ) + Du(kT )

with A = eFT and B =
(

∫ T
0 eFλdλ

)

G .
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State space – Sampled systems

The discrete-time representation of the continuous-time systems is

x((k + 1)T ) = Ax(kT ) + Bu(kT )
y(kT ) = Cx(kT ) + Du(kT )

with A = eFT and B =
(

∫ T
0 eFλdλ

)

G .

Proof: Recall

x(t) = eF (t−t0)x(t0) +

∫ t

t0

eF (t−τ)Gu(τ)dτ

Then substituting t0 = KT and t = (k + 1)T yields

x((k + 1)T ) = eFT x(kT ) +

∫ (k+1)T

kT
eF ((k+1)T−τ)Gu(τ)dτ

Let λ = (k + 1)T − τ . When τ = kT then λ = T and when τ = (k + 1)T then λ = 0. Hence
(dλ = −dτ),

x((k + 1)T ) = eFT x(kT )−
∫ 0

T
eFλGu(kT )dλ = eFT x(kT ) +

(∫ T

0
eFλdλ

)

Gu(kT )
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State space – Structural properties

◮ A state x̄ is reachable if there exists a finite instant of time k and an input sequence
{u(k)} such that the initial state 0 of the system can be transferred to x̄ .

◮ The system is said to be reachable if all its states are reachable.

◮ A state x̄ is controllable if there exists a finite instant of time k and an input sequence
{u(k)} such that the initial state x̄ of the system can be transferred to 0.

◮ The system is said to be controllable if all its states are controllable.

Let P =
[

B AB A2B . . . An−1B
]

be the reachability matrix.

◮ The system is reachable if and only if rank [P] = n.

◮ The system is controllable if and only if rank
[

P An
]

= rank [P].

While in continuous-time reachability and controllability are equivalent, in discrete-time
reachability implies controllability but the converse is not true!

Example: a controllable but not reachable system

x(k + 1) = 0
y(k) = 0.
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State space – Structural properties

Observability (determining the initial state given the input and output sequences) and
reconstructability (determining the final state given the input and the output sequences) can be
defined in a similar way.

Let Q =















C
CA
CA2

.

.

.
CAn−1















be the observability matrix.

◮ The system is observable if and only if rank [Q] = n.

◮ The system is recontructable if and only if rank

[

Q
An

]

= rank [Q].

While in continuous-time observability and reconstructability are equivalent, in discrete-time
observability implies reconstructability but the converse is not true!

Example: a reconstructable but not observable system

x(k + 1) = 0
y(k) = 0.
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State space – Structural properties

The Kalman decomposition helps us to understand why the transfer function represents only the
reachable and observable part of the system (the proof of the Kalman decomposition requires
concepts of linear algebra, such as subspaces and direct sum, which are beyond the scopes of this
course).
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State space – Structural properties

Kalman decomposition: For any linear system there exists a change of coordinates such that the
matrices of the system in the new coordinates are AK = T−1AT , BK = T−1B, CK = CT ,
DK = D, where

AK =









Ar ō A12 A13 A14

0 Aro 0 A24

0 0 Ar̄ ō A34

0 0 0 Ar̄ o









, BK =









Br ō

Bro

0
0









, CK =
[

0 Cro 0 Cr̄ o
]

.

◮ The subsystem

([

Ar ō A12

0 Aro

]

,

[

Br ō

Bro

]

,
[

0 Cro
]

,D

)

is reachable.

◮ The subsystem

([

Aro A24

0 Ar̄ o

]

,

[

Bro

0

]

,
[

Cro Cr̄ o
]

,D

)

is observable.

◮ The subsystem (Aro ,Bro ,Cro ,D) is reachable and observable.

Hence, CK (zI − AK )
−1BK + DK = Cro(zI − Aro)−1Bro + D!
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State space – Design via pole placement

Given a linear discrete-time system

x(k + 1) = Ax(k) + Bu(k)

with characteristic polynomial

det (zI − A) = zn + a1z
n−1 + · · ·+ an−1z + an = 0

we want to design a state feedback control law

u(k) = −Kx(k)

such that the closed-loop system

x(k + 1) = (A+ BK)x(k)

has the desired eigenvalues {µ1, µ2, . . . , µn}, i.e. the characteristic polynomial is

n
∏

j=1

(z − µj ) = zn + α1z
n−1 + · · ·+ αn−1z + αn = 0 = Φ(z).

Several algorithms are available for this task, e.g. Mitter’s algorithm, Ackermann’s formula
(implemented in MATLAB as “place”).
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State space – Design via pole placement

Given a linear discrete-time system

x(k + 1) = Ax(k) + Bu(k)

with characteristic polynomial

det (zI − A) = zn + a1z
n−1 + · · ·+ an−1z + an = 0

we want to design a state feedback control law

u(k) = −Kx(k)

such that the closed-loop system

x(k + 1) = (A+ BK)x(k)

has the desired eigenvalues {µ1, µ2, . . . , µn}, i.e. the characteristic polynomial is

n
∏

j=1

(z − µj ) = zn + α1z
n−1 + · · ·+ αn−1z + αn = 0 = Φ(z).

Ackermann’s formula

K =
[

0 0 . . . 0 1
] [

B AB A2B . . . An−1B
]−1

Φ(A)
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Outline

◮ Introduction to digital control systems

◮ Z-transform: definition, properties and theorems

◮ Sampling and reconstruction

◮ The pulse transfer function

◮ Stability and performance

◮ Control design (discretization, W -plane, root locus and analytical methods)

◮ State space approach

◮ Optimal control (dynamic programming and LQR)

◮ Some advanced topics
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Optimal Control - Dynamic programming

Optimal control theory deals with the problem of finding a control law for a given system such
that a certain optimality criterion is achieved.

A very useful tool to solve (unconstrained) optimal control problems is the dynamic
programming principle.
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Optimal Control - Dynamic programming

Consider the system
x(k + 1) = f (x(k), u(k)) k = 0, 1, . . . ,N

where

◮ x(k) lives in a finite set X consisting of n elements

◮ u(k) lives in a finite set U consisting of m elements

and a cost V which we want to minimize

min
{u(k)}

V = min
{u(k)}

{

Cterminal(x(N), u(N)) +

N−1
∑

k=0

Crunning(x(k), u(k))

}
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Optimal Control - Dynamic programming

Consider the system
x(k + 1) = f (x(k), u(k)) k = 0, 1, . . . ,N

where

◮ x(k) lives in a finite set X consisting of n elements

◮ u(k) lives in a finite set U consisting of m elements

and a cost V which we want to minimize

min
{u(k)}

V = min
{u(k)}

{

Cterminal(x(N), u(N)) +

N−1
∑

k=0

Crunning(x(k), u(k))

}

Brute Force approach

A naive approach to the solution of the problem if to enumerate all possible trajectories going
forward up to time N, calculate the cost for each one, then compare them and select the optimal
one.

Since there are mN possible trajectories and we need N additions to compute the cost, we need
around O(NmN) algebraic operations to implement this solution. This is highly inefficient!
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Optimal Control - Dynamic programming

Consider the system
x(k + 1) = f (x(k), u(k)) k = 0, 1, . . . ,N

where

◮ x(k) lives in a finite set X consisting of n elements

◮ u(k) lives in a finite set U consisting of m elements

and a cost V which we want to minimize

min
{u(k)}

V = min
{u(k)}

{

Cterminal(x(N), u(N)) +

N−1
∑

k=0

Crunning(x(k), u(k))

}

Principle of Optimality (Dynamic Programming)

An optimal policy has the property that whatever the initial state and initial decision are, the
remaining decisions must constitute an optimal policy with regard to the state resulting from the
first decision. (See Bellman, 1957, Chap. III.3.)
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Optimal Control - Dynamic programming

We want to go from state x(0)=A to state x(N)=J minimizing the cost (weights on the graph
edges).
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Optimal Control - Dynamic programming

We want to go from state x(0)=A to state x(N)=J minimizing the cost (weights on the graph
edges).

Greedy approach: select the least expensive trajectory at each step.

The cost of the Greedy approach is V = 13.
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Optimal Control - Dynamic programming

We want to go from state x(0)=A to state x(N)=J minimizing the cost (weights on the graph
edges).

Now we use the dynamic programming principle. We start from the end...
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Optimal Control - Dynamic programming

We want to go from state x(0)=A to state x(N)=J minimizing the cost (weights on the graph
edges).

Dr. G. Scarciotti
Digital Control Systems
73/77



Optimal Control - Dynamic programming

We want to go from state x(0)=A to state x(N)=J minimizing the cost (weights on the graph
edges).

So the optimal cost to go from state A to state J is V = 11.
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Optimal Control - Dynamic programming

We want to go from state x(0)=A to state x(N)=J minimizing the cost (weights on the graph
edges).

One optimal path.
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Optimal Control - Dynamic programming

We want to go from state x(0)=A to state x(N)=J minimizing the cost (weights on the graph
edges).

The optimal path is not unique.
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Optimal Control - Dynamic programming

Computational cost

At each time k, for each state x(k) and each control u(k) we need to add the cost of the
corresponding transition to the cost-to-go already computed for the resulting x(k + 1).

Thus, the number of required operations is O(nNm). Moreover, this scheme finds the optimal
policy for every initial condition x(0). In comparison the brute force approach requires O(nNmN)
operations to achieve the same.

Note that dynamic programming is not useful just from an applicative point of view. It is an
important tool also to solve analytically optimal control problems, as we do in the next slides.
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Optimal Control - LQR

The linear quadratic regulator (LQR) problem can be formulated as follows. Given a reachable
linear discrete-time system

x(k + 1) = Ax(k) + Bu(k)

with x(0) = x0, find the optimal control sequence {u(k)} that minimizes the performance index

J = x⊤(N)Sx(N) +

N−1
∑

k=0

x⊤(k)Qx(k) + u⊤(k)Ru(k)

where

◮ Q n × n positive definite or positive semidefinite symmetric matrix

◮ R r × r positive definite symmetric matrix

◮ S n × n positive definite or positive semidefinite symmetric matrix
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Optimal Control - LQR

The linear quadratic regulator (LQR) problem can be formulated as follows. Given a reachable
linear discrete-time system

x(k + 1) = Ax(k) + Bu(k)

with x(0) = x0, find the optimal control sequence {u(k)} that minimizes the performance index

J = x⊤(N)Sx(N) +

N−1
∑

k=0

x⊤(k)Qx(k) + u⊤(k)Ru(k)

Solution: The optimal control is

u(k) = −(R + B⊤P(k + 1)B)−1B⊤P(k + 1)Ax(k)

where the matrix P(k) is the solution of the discrete-time backward Riccati equation

P(k) = A⊤P(k + 1)A+ Q − A⊤P(k + 1)B(B⊤P(k + 1)B + R)−1B⊤P(k + 1)A

with the initial condition P(N) = S .

The optimal cost is Jmin = x⊤0 P(0)x0.
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Optimal Control - LQR

Proof via Dynamic Programming

Define the cost-to-go at the time k as

V (k) = min
u(k),...,u(N−1)







x⊤(N)Sx(N) +

N−1
∑

j=k

x⊤(j)Qx(j) + u⊤(j)Ru(j)






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Optimal Control - LQR

Proof via Dynamic Programming

Define the cost-to-go at the time k as

V (k) = min
u(k),...,u(N−1)







x⊤(N)Sx(N) +

N−1
∑

j=k

x⊤(j)Qx(j) + u⊤(j)Ru(j)







Then obviously
V (N) = x⊤(N)Sx(N)

and we define P(N) = S .
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Optimal Control - LQR

Proof via Dynamic Programming

Define the cost-to-go at the time k as

V (k) = min
u(k),...,u(N−1)







x⊤(N)Sx(N) +

N−1
∑

j=k

x⊤(j)Qx(j) + u⊤(j)Ru(j)







Then obviously
V (N) = x⊤(N)Sx(N)

and we define P(N) = S .

Now we compute V (N − 1) which is

V (N − 1) = minu(N−1)

{

V (N) + x⊤(N − 1)Qx(N − 1) + u⊤(N − 1)Ru(N − 1)
}
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
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Optimal Control - LQR

Proof via Dynamic Programming

Now we compute V (N − 1) which is

V (N − 1) = minu(N−1)

{

V (N) + x⊤(N − 1)Qx(N − 1) + u⊤(N − 1)Ru(N − 1)
}

= minu(N−1)

{

x⊤(N)P(N)x(N) + x⊤(N − 1)Qx(N − 1) + u⊤(N − 1)Ru(N − 1)
}

= minu(N−1)

{

(Ax(N − 1) + Bu(N − 1))⊤P(N)(Ax(N − 1) + Bu(N − 1))

+x⊤(N − 1)Qx(N − 1) + u⊤(N − 1)Ru(N − 1)
}
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Optimal Control - LQR

Proof via Dynamic Programming

Now we compute V (N − 1) which is

V (N − 1) = minu(N−1)

{

V (N) + x⊤(N − 1)Qx(N − 1) + u⊤(N − 1)Ru(N − 1)
}

= minu(N−1)

{

x⊤(N)P(N)x(N) + x⊤(N − 1)Qx(N − 1) + u⊤(N − 1)Ru(N − 1)
}

= minu(N−1)

{

(Ax(N − 1) + Bu(N − 1))⊤P(N)(Ax(N − 1) + Bu(N − 1))

+x⊤(N − 1)Qx(N − 1) + u⊤(N − 1)Ru(N − 1)
}
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Optimal Control - LQR

Proof via Dynamic Programming

Now we compute V (N − 1) which is

V (N − 1) = minu(N−1)

{

V (N) + x⊤(N − 1)Qx(N − 1) + u⊤(N − 1)Ru(N − 1)
}

= minu(N−1)

{

x⊤(N)P(N)x(N) + x⊤(N − 1)Qx(N − 1) + u⊤(N − 1)Ru(N − 1)
}

= minu(N−1)

{

(Ax(N − 1) + Bu(N − 1))⊤P(N)(Ax(N − 1) + Bu(N − 1))

+x⊤(N − 1)Qx(N − 1) + u⊤(N − 1)Ru(N − 1)
}

= minu(N−1)

{

x(N − 1)⊤(Q + A⊤P(N)A)x(N − 1) + x(N − 1)⊤A⊤P(N)Bu(N − 1)

+u⊤(N − 1)B⊤P(N)Ax(N − 1) + u⊤(N − 1)(R + B⊤P(N)B)u(N − 1)
}
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Optimal Control - LQR

Proof via Dynamic Programming

Now we compute V (N − 1) which is

V (N − 1) = minu(N−1)

{

V (N) + x⊤(N − 1)Qx(N − 1) + u⊤(N − 1)Ru(N − 1)
}

= minu(N−1)

{

x⊤(N)P(N)x(N) + x⊤(N − 1)Qx(N − 1) + u⊤(N − 1)Ru(N − 1)
}

= minu(N−1)

{

(Ax(N − 1) + Bu(N − 1))⊤P(N)(Ax(N − 1) + Bu(N − 1))

+x⊤(N − 1)Qx(N − 1) + u⊤(N − 1)Ru(N − 1)
}

= minu(N−1)

{

x(N − 1)⊤(Q + A⊤P(N)A)x(N − 1) + x(N − 1)⊤A⊤P(N)Bu(N − 1)

+u⊤(N − 1)B⊤P(N)Ax(N − 1) + u⊤(N − 1)(R + B⊤P(N)B)u(N − 1)
}

To this last expression we add and subtract

x⊤(N − 1)L⊤(N − 1)(R + B⊤P(N)B)L(N − 1)X (N − 1)

where
L(N − 1) = (R + B⊤P(N)B)−1B⊤P(N)A
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Optimal Control - LQR

Proof via Dynamic Programming

Now we compute V (N − 1) which is

V (N − 1) = minu(N−1)

{

V (N) + x⊤(N − 1)Qx(N − 1) + u⊤(N − 1)Ru(N − 1)
}

= minu(N−1)

{

x⊤(N)P(N)x(N) + x⊤(N − 1)Qx(N − 1) + u⊤(N − 1)Ru(N − 1)
}

= minu(N−1)

{

(Ax(N − 1) + Bu(N − 1))⊤P(N)(Ax(N − 1) + Bu(N − 1))

+x⊤(N − 1)Qx(N − 1) + u⊤(N − 1)Ru(N − 1)
}

= minu(N−1)

{

x(N − 1)⊤(Q + A⊤P(N)A)x(N − 1) + x(N − 1)⊤A⊤P(N)Bu(N − 1)

+u⊤(N − 1)B⊤P(N)Ax(N − 1) + u⊤(N − 1)(R + B⊤P(N)B)u(N − 1)
}

To this last expression we add and subtract

x⊤(N − 1)L⊤(N − 1)(R + B⊤P(N)B)L(N − 1)X (N − 1)

where
L(N − 1) = (R + B⊤P(N)B)−1B⊤P(N)A

and we recognized that the terms in red are quadratic in u(N − 1) + L(N − 1)x(N − 1)
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Optimal Control - LQR

Proof via Dynamic Programming

Now we compute V (N − 1) which is

V (N − 1)=minu(N−1)

{

x(N−1)⊤(Q+A⊤P(N)A−L⊤(N−1)(R+B⊤P(N)B)L(N−1))x(N−1)+

+(u(N − 1) + L(N − 1)x(N − 1))⊤(R + B⊤P(N)B))(u(N − 1) + L(N − 1)x(N − 1))
}

Since quadratic expressions are non-negative, the quadratic expression in
u(N − 1) + L(N − 1)x(N − 1) can be minimized when this term is made equal to zero. This is
achieved by selecting

u(N − 1) = −L(N − 1)x(N − 1)

With this selection the cost becomes

V (N − 1) = x(N − 1)⊤(Q + A⊤P(N)A− L⊤(N − 1)(R + B⊤P(N)B)L(N − 1))x(N − 1)

Defining
P(N − 1) = Q + A⊤P(N)A− L⊤(N − 1)(R + B⊤P(N)B)L(N − 1)

We obtain that
V (N − 1) = x(N − 1)⊤P(N − 1)x(N − 1)

We note that this has the same form of V (N), with N replaced by N − 1. Hence, we can repeat
these same steps for each k.
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Optimal Control - LQR

Proof via Dynamic Programming

The optimal control at time k is
u(k) = −L(k)x(k)

with
L(k) = (R + B⊤P(k + 1)B)−1B⊤P(k + 1)A

and
P(k) = A⊤P(k + 1)A+ Q − L⊤(k)(R + B⊤P(k + 1)B)L(k)

with the initial condition P(N) = S .

The corresponding optimal cost-to-go from x(k) to x(N) is V (k) = x(k)⊤P(k)x(k).

Thus, the optimal cost is Jmin = x⊤0 P(0)x0.
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Optimal Control - Steady-state LQR

If in the previous problem N → ∞, then the performance index becomes

J =
∞
∑

k=0

x⊤(k)Qx(k) + u⊤(k)Ru(k).

The term x⊤(∞)Sx(∞) does not appear because if we want that the cost J is finite, then we
need limk→∞ x(k) = 0 and limk→∞ u(k) = 0 i.e. the system is asymptotically stable.
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If in the previous problem N → ∞, then the performance index becomes

J =
∞
∑

k=0

x⊤(k)Qx(k) + u⊤(k)Ru(k).

The term x⊤(∞)Sx(∞) does not appear because if we want that the cost J is finite, then we
need limk→∞ x(k) = 0 and limk→∞ u(k) = 0 i.e. the system is asymptotically stable.

Solution: Since the cost converges to a constant, limk→0 P(k) = P, where P is constant. The
optimal control is

u(k) = −(R + B⊤PB)−1B⊤PAx(k)

where the matrix P is the solution of the discrete-time algebraic Riccati equation

P = A⊤PA+ Q − A⊤PB(B⊤PB + R)−1B⊤PA.

The optimal cost is Jmin = x⊤0 Px0.

Finally note that mathematical manipulations allow writing the Riccati equation in different
equivalent forms

P = A⊤PA+ Q − A⊤PB(B⊤PB + R)−1B⊤PA

= Q − A⊤(P−1 + BRB⊤)−1A
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Conclusions

This (short) course provides the basic tools for the analysis and design of simple
computer-controlled systems.

There are several important issues that we have not discussed.

- Design techniques for standard regulators.

- Advanced design methods.

- Implementation issues and the role of quantization, round-off errors, saturations, ....

- Alternative methods for the construction of discrete-time equivalent models, and methods
for the construction of approximate discrete-time models.

- Design methods for nonlinear discrete-time control systems.

- Design methods for hybrid control systems.
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